

Herausgeber:

 Manfred Weber

 Metra Mess- und Frequenztechnik in Radebeul e.K.

 Meißner Str. 58

 D-01445 Radebeul

 Tel.
 0351-836 2191

 Fax
 0351-836 2940

 Email
 Info@MMF.de

 Internet
 www.MMF.de

Hinweis: Die jeweils aktuellste Fassung dieser Anleitung finden Sie als PDF unter https://mmf.de/produktliteratur

Änderungen vorbehalten.

© 2024 Manfred Weber Metra Mess- und Frequenztechnik in Radebeul e.K. Nachdruck, auch auszugsweise, nur mit Genehmigung.

Mai. 24

Inhalt

1. Verwendungszweck	3
2. Eigenschaften	3
3. Bedienung	4
3.1. Anschlüsse und Bedienelemente	4
3.2. Ein-/Ausschalten und Reset	5
3.3. Menüleiste	5
3.4. Sensoren	6
3.5. USB-Anschluss	7
3.6. Laden des Akkumulators	7
3.7. SD-Karte und Dateisystem	8
4. Messmodule	9
4.1. Lizenzen	9
4.2. Modul Amplitude/Zeit	10
4.3. Modul Frequenzanalyse (FFT)	15
4.4. Modul Amplitude/Drehzahl	
4.5. Modul Maschinenschwingung	25
4.5.1. Grundlagen	25
4.5.2. Anlegen von Messrouten	
4.5.3. Anlegen von Messpunkten in einer Route	27
4.5.4. Assistent für ISO-Normen zur Schwingstärkemessung	29
4.5.5. Messung von Maschinenschwingungen	
4.5.5.1. Messbildschirm öffnen	
4.5.5.2. Messung der Schwingstärke	
4.5.5.2.1 Anzeige von Kennwerten und Phasenwinkeln	
4.5.5.2.2 Kurzzeittrend der Kennwerte	
4.5.5.2.3 Frequenzspektrum (FFT)	
4.5.5.2.4 Anzeige der Langzeittrends von Schwingstärke und F	Phase34
4.5.5.3. Messung von Wälzlagerschwingungen	35
4.5.5.3.1 Anzeige der Schwingungskennwerte	
4.5.5.3.2 Kurzzeittrend des Spitzenwerts	
4.5.5.3.3 Hüllkurvenspektrum	
4.5.5.3.4 Frequenzbänder	
4.5.5.3.5 Anzeige der Langzeittrends	
4.5.6. Speicherung von Messungen	
4.6. Modul Hüllkurvenanalyse	41
4.6.1. Grundlagen	41
4.6.2. Messung	41
4.7. Modul Auswuchtung	
4.7.1. Grundlagen	
4.7.2. Messung	48
4.8. Modul Terzbandanalyse (VC- und Nano-Kriterien)	64
4.8.1. Grundlagen	64
4.8.2. Sensoren für VC- und Nano-Kriterien	66
4.8.3. Messung	67
4.9. Modul Hand-Arm-Schwingung	71
4.9.1. Grundlagen	71
4.9.2. Hand-Arm-Sensor	73
4.9.3. Prüfung am Einsatzort	74

4.9.4. Messung	.74
4.10. Modul Ganzkörper-Schwingung	.77
4.10.1. Grundlagen	.77
4.10.2. Ganzkörper-Sensoren	.79
4.10.3. Überprüfung am Einsatzort	.83
4.10.4. Messung	.84
4.11. Modul Ganzkörper-Schwingung mit 3 Sensoren	.87
4.11.1. Grundlagen	.87
4.11.2. Ganzkörper-Sensoren	.87
4.11.3. Messung	.88
5. Messwertspeicherung und NFC-Funktion	.91
5.1. Ordner und Dateinamen	.91
5.2. NFC-Messstellenerkennung	.93
5.3. Speichern als Bitmap-Bildschirmfoto	.94
5.4. Speichern im CSV-Format	.94
5.5. Ansehen gespeicherter Messdaten	.94
5.6. Rohdatenaufzeichnung im WAV-Format	.95
6. Voreinstellungen	.96
7. Sonstige Einstellungen	.97
7.1. Anzeigeeinstellungen	.97
7.2. Datum und Uhrzeit	.98
7.3. Anzeigesprache	.98
7.4. Signalton	.98
7.5. Werkseinstellungen	.98
7.6. Gerätedaten anzeigen	.98
8. Firmware-Update	.99
9. Fehlerursachen	103
10. Technische Daten	04

Anlagen: Garantie

Garantie CE-Konformitätserklärung

Vielen Dank, dass Sie sich für ein Schwingungsmessgerät der Firma Metra entschieden haben!

1. Verwendungszweck

Der Schwingungsanalysator VM100 eignet sich für viele Aufgaben der Schwingungsmessung. Dazu gehören:

- Allgemeine Kennwertmessungen im Zeitbereich mit Aufzeichnung von Zeitverläufen
- Frequenzanalyse (FFT)
- Amplituden-/Drehzahlmessung
- Messung von Maschinenschwingungen
- Wälzlagerdiagnose mittels Hüllkurvenanalyse
- Auswuchtung
- Messung extrem geringer Amplituden im Terz-Spektrum nach den "VC"- und "Nano"-Kriterien
- Hand-Arm-Schwingungsmessung nach ISO 5349 an einer oder beiden Händen
- Ganzkörper-Schwingungsmessung (triaxial) nach ISO 2631 mit Gesundheits- und Komfortbewertungen, Messung von Schwingungen auf Schiffen nach ISO 6954
- Das Gerät entspricht den Festlegungen für Humanschwingungsmesser nach ISO 8041-1
- Ganzkörper-Schwingungsmessung mit drei Triaxialsensoren zur Beurteilung des Fahrkomforts

2. Eigenschaften

Das Gerät kann auf bis zu neun Kanälen gleichzeitig messen. Es arbeitet mit allen marktüblichen IEPE-Beschleunigungssensoren. TEDS-Sensoren werden erkannt. Zusätzlich kann eine Reflex-Lichtschranke zur Drehzahlmessung angeschlossen werden.

Das Gerät ist in folgenden Varianten erhältlich:

- VM100A mit 9 Eingängen und eingebautem Infrarot-Temperatursensor
- VM100B mit 3 Eingängen

Die Bedienung erfolgt ausschließlich über den berührungsempfindlichen Bildschirm und ist dadurch einfach und intuitiv. Zur Messwertspeicherung ist eine entnehmbare Micro-SD-Karte vorhanden. Zum Datentransfer dient eine USB-Schnittstelle. Die Speicherung von Messdaten erfolgt im CSV-Format. Dadurch können übliche Tabellenkalkulationsprogramme zur Weiterverarbeitung auf dem PC genutzt werden.

3. Bedienung

3.1. Anschlüsse und Bedienelemente

An der oberen Schmalseite finden Sie ein kleines Tastenfeld mit der Einschalttaste, der Resettaste und einer Funktionstaste. Beim VM100A befindet sich hier außerdem der Infrarot-Temperatursensor (Bild 1 und Bild 2). Die Lade-LED leuchtet bei Anschluss an ein USB-Ladegerät oder einen PC rot.

Bild 2: Tastenfeld beim VM100B

Ebenfalls an der oberen Schmalseite befinden sich hinter einer Klappe die USB-Buchse (Typ C) zum Laden und Übertragen von Daten sowie die Micro-SD-Karte.

An der unteren Schmalseite finden Sie beim VM100A drei und beim VM100B eine Sensorbuchse. Jede der vierpoligen Sensorbuchsen eignet sich für den Anschluss eines Triaxialsensors (X/Y/Z). Bild 3 zeigt den Blick von außen auf die Anschlüsse. Die Belegung ist:

- 1: Masse
- 2: Kanal X
- 3: Kanal Y
- 4: Kanal Z

Es handelt sich um Standard-IEPE-Eingänge.

Ein Triaxialsensor benötigt drei Eingänge. Alle Triaxial-Beschleunigungsaufnehmer von Metra sind mit ihren Standardkabeln anschließbar. Alternativ können je Eingangsbuchse drei einachsige Sensoren angeschlossen werden. Dazu ist ein Adapterkabel auf drei BNC-Kupplungen als Zubehör lieferbar.

Weiterhin finden Sie hier den Tacho-Anschluss für eine Reflex-Lichtschranke zur Drehzahlmessung (Bild 4) mit folgender Belegung:

- 1: +26 V
- 2: Digitaleingang D1
- 3: Digitaleingang D2
- 4: +5 V
- 5: Analogeingang A1
- 5: Analogeingang A2

7: Masse

Die Eingänge D2, A1 und A2 sind derzeit ungenutzt.

Bild 4: Tacho-Eingang

Bild 3: Sensorbuchse(n)

Hinter einer Abdeckung befindet sich ein weiterer USB-Anschluss, der nur für Firmware-Updates vorgesehen ist.

3.2. Ein-/Ausschalten und Reset

Das VM100 wird durch kurzes Drücken der roten Taste auf dem seitlichen Tastenfeld eingeschaltet (Bild 1 und Bild 2). Es startet immer mit den zuletzt gewählten Einstellungen und ist sofort einsatzbereit im Messbetrieb. Sollte die Akku vollständig entladen sein, kann der Anschluss eines Ladegeräts zum Starten erforderlich sein.

Zum Ausschalten berühren Sie das Ein-/Aus-Symbol 🕐 oben links auf dem Bildschirm.

Durch Drücken der **Reset**-Taste kann das Gerät aus jedem Programmpunkt heraus neu gestartet werden. Vorher gemachte Eingaben bleiben erhalten.

Bei angeschlossenem Ladegerät oder USB-Verbindung wird das Gerät über eine Bildschirmtaste gestartet.

Sollte das VM100 einmal nicht auf normale Weise starten, führen Sie einen Werks-Reset durch, indem Sie bei gedrückter Taste F1 kurz die Taste RESET drücken oder bei gedrückter Taste F1 die Taste 🕑 drücken.

3.3. Menüleiste

Alle Funktionsmodule verwenden eine einheitliche Menüleiste am oberen Rand des Bildschirms (Bild 5).

(i)

🕛 Machine Monitoring 📃 🤊

Bild 5: Menüleiste

Die Menüleiste enthält folgende Komponenten:

- Aus-Schaltfläche
- Funktionsmenü: Berühren Sie den Menütext, um ein Dropdown-Menü mit allen Funktionsmodulen zu öffnen. Nicht lizensierte Funktionen sind ausgegraut. Durch Berühren eines Menüpunkts wählen Sie die Funktionsart. Wird keine Auswahl getroffen, schließt sich das Menü nach einigen Sekunden wieder.
- Die Info-Schaltfläche 🛈 liefert eine Kurzhilfe zum aktiven Funktionsmodul.
- Die Menü-Schaltfläche 🗮 öffnet eine Menüstruktur mit diversen Einstellungen.
- Die Speicher-Schaltfläche 🗐 öffnet das Menü zur Datenspeicherung auf SD-Karte (vgl. Abschnitt 7). Ist keine SD-Karte eingelegt, erscheint das Symbol durchgestrichen.
- Das USB-Symbol 🕶 dient zum Herstellen einer Datenverbindung zum PC.
- Das Batteriesymbol zeigt den aktuellen Ladezustand des Gerätes. Bei fortgeschrittener Entladung wird der Anzeigebalken gelb und bei kritischem Ladezustand rot. Bei angeschlossenem Ladegerät wird stattdessen das Ladesymbol
 angezeigt. Nach Abschluss des Ladens erscheint rechts ein Steckersymbol für Batterieunterstützung (vgl. Abschnitt 3.6).

• Die Menüleiste zeigt das Datum und die Uhrzeit an. Beim VM100A sehen Sie darunter die gemessene Temperatur des eingebauten Infrarot-Sensors (Bild 1).

3.4. Sensoren

Das Sensormenü (Bild 6) öffnet sich durch Auswahl des Punkts Sensoren (Sensors) im Hauptmenü.

Sens	ors		S	×	~
\checkmark	IEPE supp	ly on			
1X	10.120	mV/m/s² 🔽			
1Y	10.080	mV/m/s² 🔽			
1Z	10.110	mV/m/s² 🔽			
2X	1.0102	mV/m/s² (TEDS) KS903E	310 #2202:	В	
2Y	1.0422	mV/m/s² (TEDS) KS903E	310 #2202:	В	
2Z	1.1472	mV/m/s² (TEDS) KS903E	310 #2202:	В	
3X	25.680	mV/Pa 🔽			
3Y	50.320	mV/N 🔽			
3Z	101.12	mV/m/s² 🔽			
Bild 6:	Sensormenü				

Es zeigt die Empfindlichkeiten der verbundenen Sensoren an. Wie in der gesamten Bedienoberfläche des VM100 werden je Eingangsbuchse ("1" bis "3" beim VM100A bzw. "1" beim VM100B) drei Eingänge (X/Y/Z) dargestellt. Bei Eingän-

Das VM100 unterstützt TEDS-Sensoren. TEDS steht für "Transducer Electronic Data Sheet" und ist nach IEEE 1451.4 standardisiert. Dabei sind im Sensor die wichtigsten Daten digital gespeichert und können vom Messgerät automatisch ausgelesen werden. Messfehler durch Verwechslungen oder falsche Eingaben werden dadurch ausgeschlossen. Unterstützt wird die Standard-Datenanordnung für Beschleunigungsaufnehmer nach "Template 25". Wird ein TEDS-Aufnehmer erkannt, zeigt das Sensormenü dessen Empfindlichkeit, Typenbezeichnung und Seriennummer an. In Bild 6 ist dies für einen TEDS-Triaxialsensor an Buchse 1 gezeigt. Die Empfindlichkeit von TEDS-Sensoren ist im Menü nicht editierbar.

Bei herkömmlichen Sensoren öffnet sich bei Berührung der Empfindlichkeit ein numerisches Eingabefeld zum Eintragen der Empfindlichkeit. Die Maßeinheit kann in mV/Pa für Druckaufnehmer und Messmikrofone bzw. mV/N für Kraftaufnehmer geändert werden. Die Maßeinheiten Pascal oder Newton werden dann in bestimmten Betriebsarten an Stelle der Beschleunigung angezeigt. Einige Betriebsarten, z.B. die Auswuchtung, verlangen nach Beschleunigungsaufnehmern.

Mit 💽 werden die Sensoren neu eingelesen.

gen ohne Sensor erscheint "Kein Sensor".

Die Sensorerkennung findet auch bei jedem Einschalten des Gerätes im Hintergrund statt. Nach Wechsel eines TEDS-Sensors muss das Sensormenü damit nicht geöffnet werden. Es dient lediglich zur manuellen Eingabe der Empfindlichkeit und zur Kontrolle.

Das Kästchen oberhalb der Sensordaten dient zum Ausschalten der IEPE-Konstantstromversorgung für alle Kanäle. Dies ist nur in seltenen Fällen erforderlich, wenn das VM100 mit Wechselspannungsquellen statt mit IEPE-Sensoren arbeiten soll. Das Gerät warnt dann bei jedem Einschalten "IEPE-Versorgung aus - Keine IEPE-Sensoren nutzbar!".

3.5. USB-Anschluss

An der oberen Schmalseite finden Sie hinter einer Klappe den USB-Anschluss. Es handelt sich um eine USB-C-Buchse. Diese dient zum Laden der Batterie und zur Datenübertragung. Zum Übertragen der auf der SD-Karte gespeicherten Dateien schließen Sie das VM100 über ein USB-Kabel an einen PC an. Zum Aktivieren der Datenübertragung drücken Sie in der Menüleiste auf das USB-Symbol (Bild 7). Danach öffnet sich ein Fenster entsprechend Bild 8.

Bild 8: USB-Verbindung

Das VM100 befindet sich nun im USB-Massenspeichermodus. Es benötigt keinen Gerätetreiber und verhält sich wie ein USB-Stick, indem es das Dateisystem der SD-Karte bereitstellt.

→ Für empfindliche Messungen sollte das USB-Kabel abgesteckt werden.

3.6. Laden des Akkumulators

Der eingebaute Nickel-Metallhydrid-Akkumulator wird über die USB-C-Buchse aufgeladen (Bild 10). Zum Laden kommt ein USB-Steckernetzgerät zum Einsatz, das mindestens 3 A aus 5 V liefern sollte. Anderenfalls wird nicht der volle Ladestrom bereitgestellt und die Ladezeit verlängert sich.

Ist eine USB-Versorgung angeschlossen, leuchtet die rote Lade-LED (Bilder 1 und 2).

Wird die USB-Versorgung im ausgeschalteten Zustand des VM100 angeschlossen, öffnet sich der Ladebildschirm (Bild 9). Dieser wird nach kurzer Zeit wieder abgedunkelt. Durch Berühren des Bildschirms können Sie prüfen, ob das Gerät noch geladen wird.

Bild 9: Ladebildschirm

Im Ladebetrieb zeigt die Statusleiste rechts oben abwechselnd das Ladesymbol und den tatsächlich in den Akkumulator fließenden Ladestrom an. Der USB-Strom kann je nach verwendetem USB-Anschluss oder Ladegerät zwischen 0,5 A und 2,5 A variieren. Etwa 0,7 A werden davon für die Versorgung des Gerätes abgezweigt. Standard-USB-2.0-Anschlüsse geben nur 0,5 A ab, was u.U. nicht einmal ausreicht, um das Gerät im Messbetrieb zu versorgen, wodurch der Akkumulator trotz fließendem Ladestrom weiter entladen wird.

Ist das Laden beendet, erscheint das Batterie-/Steckersymbol **Exp.** Bei fortgeschrittener Entladung wird der Anzeigebalken gelb und bei kritischem Ladezustand rot.

- → Durch Reduzierung der Anzeigehelligkeit (vgl. Abschnitt 7.1) lässt sich die Akkumulator-Betriebsdauer beträchtlich verlängern.
- → Für empfindliche Messungen sollte das Ladegerät abgesteckt werden.
- ➔ Nach versehentlicher Tiefentladung, z.B. durch lange Lagerung, kann es erforderlich sein, durch Ab- und Anstecken des USB-Kabels den Ladevorgang mehrmals zu starten, bevor die volle Ladekapazität wieder erreicht wird.

Bild 10: USB-/Ladebuchse und SD-Karte

3.7. SD-Karte und Dateisystem

Die SD-Karte dient als Messdatenspeicher. Sie befindet sich hinter der Klappe neben der USB-Buchse (Bild 10). Das VM100 verwendet das FAT-Dateisystem. Auf die Dateien können Sie über USB von einem PC aus zugreifen (vgl. Abschnitt 3.5). Die SD-Karte kann, falls erforderlich, entnommen und in anderen Geräten ausgelesen werden. Durch leichten Druck auf den Rand der Karte entriegeln Sie diese, um sie zu entnehmen. Setzen Sie die SD-Karte mit den Kontakten nach oben wieder in das VM100 ein. Die verwendeten Ordnernamen sind fest vorgegeben. Es wird empfohlen, Speicherkarten mit einer Größe von 2 oder 4 GB zu verwenden. Näheres zur Messwertspeicherung finden Sie in Abschnitt 5. SD-Karten sollten vor dem Einsatz mit dem FAT(16)-Dateisystem formatiert werden. FAT32 führt zu einer langsameren Erkennung über USB.

- → Es wird dringend empfohlen, regelmäßig Sicherungskopien der auf der SD-Karte gespeicherten Daten anzulegen.
- ➔ Öffnen Sie von Ihrem PC aus die Dateien nicht direkt vom VM100. Beginnen Sie immer, indem Sie die Datei zunächst in einen Ordner auf dem PC kopieren.
- ➔ Das Speichern zusätzlicher Dateien oder das Anlegen neuer Ordner auf der SD-Karte mit Hilfe anderer Geräte wird nicht empfohlen.

4. Messmodule

4.1. Lizenzen

Das VM100 unterstützt eine Reihe von Aufgaben, die in Messmodule gegliedert sind. Bild 11 zeigt die verfügbaren Module.

Standardmäßig vorinstalliert sind Amplitude/Zeit (Amplitude/Time) und Frequenzanalyse (Frequency Analysis). Die anderen Funktionen können durch Erwerb von Freischaltcodes (Lizenzen) aktiviert werden. Dies geschieht durch eine Textdatei mit der Bezeichnung VM100_xxxxxx licence.key, die im Hauptverzeichnis der SD-Karte abgelegt werden muss. Dabei steht x...x für die 6-stellige Seriennummer des Geräts gemäß Typenschild bzw. Gerätedatenmenü (vgl. Abschnitt 7.6). Diese Lizenzdatei erhalten Sie vom Hersteller. Sie wird nur zum einmaligen Einlesen der Lizenzen benötigt. Das Einlesen erfolgt automatisch nach dem Einschalten des Gerätes. Die Lizenzdatei wird danach nicht mehr benötigt, kann aber auf der SD-Karte verbleiben. Für jede neu hinzugefügte Lizenz wird ein Hinweis angezeigt.

4.2. Modul Amplitude/Zeit

Dieses Modul ist standardmäßig vorinstalliert und eignet sich für Kennwertmessungen im Zeitbereich. Im oberen Teil befindet sich die einheitliche Menüleiste, die in Abschnitt 3.3 beschrieben wird. Links werden bis zu neun Schwingungskennwerte angezeigt. Rechts davon werden die Kennwerte als Amplitudenverlauf grafisch dargestellt (Bild 12).

Das Modul kann zusätzlich die Drehzahl messen und anzeigen. Voraussetzung dafür ist der Anschluss einer Reflex-Lichtschranke VM100-LS (vgl. Bild 68 auf Seite 48) an den Eingang "RPM" des VM100.

Das Schreiben der Amplitudenverlaufskurven beginnt erst nach 15 s nach Start des Moduls, um Einschwingvorgänge zu unterdrücken. Durch Berühren der diesbezüglichen Meldung im Diagramm kann die Wartezeit übersprungen werden.

→ Für empfindliche Messungen sollte das USB-Kabel abgesteckt werden.

Bild 12: Messwertanzeige im Modul Amplitude/Zeit

Durch Berühren einer der **Kanalschaltflächen** am linken Rand öffnen Sie das Menü zur Einstellung des Messkanals (Bild 13).

Alternativ können Sie durch Berühren der untersten Schaltfläche "ALL" alle Kanäle auf einmal mit den gleichen Einstellungen versehen. Einstellungen, die dabei nicht gewählt werden können, bleiben unverändert (Bild 14). In diesem Menü können Sie auch die Drehzahleinheit zwischen 1/min oder Hz wählen.

Settings for Display Channel 1 🛛 🗙 🗸							
Sensor	1X 🔽	Integration	none 🔽				
Mode	RMS 🔽	High pass	2 Hz 💌				
Gain	Auto 🔽	Low pass	1000 Hz 🔽				
Gain is set equally for all chan using the same sensor	inels	High pass frequency <= With low pass >4 kHz	= 1/3 low pass frequency only 3 channels, no integration				
Plot							
Bild 13: Kanalein	stellungen						
Settings for D	isplay Channe	el 1 - 9	×				
Sensor	-	Integration	select 🔽				
Mode	select 💌	High pass	0.2 Hz 💌				
Gain	select 🔽	Low pass	15 Hz 💌				
Gain is set equally for all chan using the same sensor	inels	High pass frequency < With low pass >4 kHz	= 1/3 low pass frequency only 3 channels, no integration				
Mode Vector 1 (square sum of Mode Vector 2 (square sum of only on channels 8 and 9	f Ch 1 to 3) and f Ch 4 to 6)	RPM unit	1/min				

Bild 14: Einstellungen für alle Kanäle gleichzeitig

Die Anzeigekanäle 1 bis 9 können frei mit den Sensoreingängen 1X, 1Y und 1Z beim VM100B bzw. den Sensoreingängen 1X bis 3Z beim VM100A verbunden werden.

Die Auswahl im Menü **Sensor** verbindet den Anzeigekanal mit einem einem Sensoreingang. Auch beim dreikanaligen VM100B können somit bis zu neun Messwerte angezeigt werden. Für einen Sensor können zum Beispiel verschiedene Kennwerte oder Frequenzbänder angezeigt werden. Unter **Modus** (Mode) wird der anzuzeigende Kennwert gewählt. Folgende Kennwerte sind messbar:

RMS	Effektivwert mit 1 s Mittelungsdauer
RMS(T)	Effektivwert mit unbegrenzter Mittelungsdauer
Peak	Spitzenwert (0 – Peak) mit 1 s Haltezeit
Pk-Pk	Spitze-Spitze-Wert (Peak – Peak) mit 1 s Haltezeit
Pk hold	Maximal-Spitzenwert (0 - Peak) mit unbegrenzter Haltezeit
Crest	Scheitelfaktor (Peak/RMS)
Frequ.	Hauptfrequenz (Frequenz bei der größten FFT-Amplitude), nur bis 4 kHz Bandbreite und auf maximal 3 Anzeigekanälen
Vector 1	Wurzel der Quadratsumme (Schwingungsgesamtwert) der Amplituden von Anzeigekanal 1, 2 und 3; nur auf Anzeigekanal 8 oder 9 wählbar*
Vector 2	Wurzel der Quadratsumme (Schwingungsgesamtwert) der Amplituden von Anzeigekanal 4, 5 und 6; nur auf Anzeigekanal 8 oder 9 wählbar*

* Die "Vector"-Werte werden aus der Quadratsumme der entsprechenden drei Anzeigewerte ermittelt, wobei nicht auf gleichen Modus, Filter etc. geachtet wird.

Im Menü **Integration** kann gewählt werden, ob nicht, einfach oder doppelt integriert wird. Integration ist nur in Verbindung mit Beschleunigungsaufnehmern sinnvoll. Einfache Integration liefert die Schwinggeschwindigkeit, doppelte Integration den Schwingweg.

Weiterhin können **Hochpass-**Filter (High pass) zwischen 0,2 und 5000 Hz sowie **Tiefpass-**Filter (Low pass) von 10 bis 24 000 Hz gewählt werden. Dabei gelten folgende Einschränkungen:

- Die höchste einstellbare Hochpassfrequenz liegt bei einem Drittel der Tiefpassfrequenz.
- Der maximale Frequenzbereich für Einfachintegration erstreckt sich von 2 bis 2000 Hz.
- Der maximale Frequenzbereich für Doppelintegration erstreckt sich von 2 bis 300 Hz.
- Mit Tiefpassfiltern über 4000 Hz kann nur dreikanalig mit fester Kanal-/Sensorzuordnung gemessen werden. Frequenzen über 4000 Hz sind nur auf den oberen drei Anzeigekanälen (1X/1Y/1Z) wählbar. Die Hochpässe 2, 3 und 4 Hz sind in diesem Fall nicht verfügbar. Hauptfrequenz und Wurzel der Quadratsumme stehen nicht zur Verfügung.

Die Hoch- und Tiefpässe sind Butterworth-Filter zweiter Ordnung mit einer Dämpfung von 40 dB pro Frequenzdekade. Eine Ausnahme bilden die Tiefpässe 4 kHz und 24 kHz. Bei diesen wird das sehr steile Digitalfilter der Analog-Digitalwandler wirksam. Die Dämpfung liegt bereits bei der 1.5-fachen Grenzfrequenz über 100 dB. In Bild 15 sehen Sie die Amplitudenfrequenzgänge mit einigen Filtern sowie Integratoren, bezogen auf die Sensor-Messgröße Beschleunigung.

Bild 15: Amplitudenfrequenzgänge (Auswahl)

Im Menü **Verstärkung** (Gain) kann zwischen automatischer Verstärkungseinstellung und den festen Verstärkungen 1, 10 und 100 gewählt werden. In der Regel ist die Einstellung "Auto" empfehlenswert. Nur bei stark schwankenden Amplituden ist eine feste Verstärkung zweckmäßig, um ein fortwährendes Umschalten zu vermeiden.

Mit **Plotten** (Plot) kann gewählt werden, ob der Kanal im Zeitdiagramm angezeigt wird. Jeder Kanal hat eine Kennfarbe, die für den Messwert und den Zeitgraph verwendet wird. Wird ein Kanal nicht im Zeitdiagramm angezeigt, erscheint sein Messwert in Weiß.

Alle Einstellungen bleiben auch nach dem Ausschalten des Geräts oder dem Wechsel des Messmoduls erhalten.

Im Zeitdiagramm wird für jeden gemessenen Wert ein Datenpunkt erzeugt. Das Diagramm wird von links beginnend gezeichnet. Am linken Rand befindet sich immer der aktuelle Aufzeichnungszeitpunkt. Nach rechts hin werden die Messdaten älter. Der sichtbare Diagrammbereich umfasst 10 Minuten. Mit dem Scroll-Balken können Sie den gesamten Aufzeichnungsbereich von bis zu 10 Stunden durchsuchen. Nach 10 Stunden werden die ältesten Messdaten aus dem Speicher herausgeschoben.

Die Y-Achse ist logarithmisch skaliert. Die Maßeinheiten entsprechen denen der Messwerte.

Zusätzlich wird der Verlauf der Drehzahl angezeigt, falls diese im Sensormenü aktiviert ist (vgl. Abschnitt 3.4).

Die Diagrammaufzeichnung kann pausiert (Ⅱ) oder neu gestartet (I◄) werden.

Die Messwertspeicherung erfolgt unabhängig vom Diagramm als CSV-Datentabelle. Dazu öffnen Sie mit als Speichermenü und wählen CSV-Speicherung (vgl. Abschnitt 5). Der Speicherknopf erscheint darauf in gelb mit dem Text "LOG". Die Messwerte werden nun im Sekundentakt in eine Datei geschrieben. Der Dateiname und die Messwertanzahl werden am oberen Rand des Diagramms angezeigt. Zum Beenden der Aufzeichnung berühren Sie erneut die Speicher-Schaltfläche. Nach 24 Stunden wird die CSV-Datei geschlossen und automatisch eine neue erstellt. Diese erhält den gleichen Dateinamen mit der Ergänzung "..._a.csv", die nächste "..._b.csv", bis die Aufzeichnung nach 27 Tagen bei "..._z.csv" beendet wird.

Die gespeicherten Dateien finden Sie auf der SD-Karte im Verzeichnis "AMP-TIME". Eine zehnstündige Aufzeichnung hat eine Größe von ca. 5 MB.

AMPLITUDE	/TIME										
Instr.:	VM100A	Ser.:	123456								
Comment:	TEST 2										
NFC Id:											
Sensor 1X:		Ser.:	170345	Sensit.:	10.313	mV/m/s ²					
Sensor 1Y:		Ser.:	170345	Sensit.:	10.354	mV/m/s ²					
Sensor 1Z:		Ser.:	170345	Sensit.:	10.879	mV/m/s ²					
Sensor 2X:		Ser.:	181653	Sensit.:	100.45	mV/m/s ²					
Sensor 2Y:		Ser.:	181653	Sensit.:	100.35	mV/m/s ²					
Sensor 2Z:		Ser.:	181653	Sensit.:	100.18	mV/m/s ²					
Sensor 3X:		Ser.:	173871	Sensit.:	10.313	mV/m/s²					
Sensor 3Y:		Ser.:	173871	Sensit.:	10.354	mV/m/s ²					
Sensor 3Z:		Ser.:	173871	Sensit.:	10.879	mV/m/s ²					
Date:	20.01.2022		Temp.:	22	°C						
Sensor:	1X	1Y	1Z	2X	2Y	2Z	3X	3Y	3Z	RPM	
HP (Hz):	5	5	1000	5	5	5	5	5	5		
LP (Hz):	1000	1000	4000	4000	4000	4000	4000	4000	4000		
Mode:	RMS	RMS	RMS	RMS	RMS	RMS	RMS	RMS	RMS		
Unit:	m/s ²	m/s²	m/s ²	m/s ²	m/s²	m/s ²	mm/s	mm/s	mm/s	rpm	
11:36:38	0.962	0.963	0.600	1.275	1.275	1.216	1.016	0.936	0.924	0	
11:36:39	0.963	0.923	0.601	1.275	1.187	1.216	1.009	0.936	0.924	0	
11:36:40	0.777	0.726	0.578	1.103	1.043	1.061	1.025	0.921	0.928	0	
11:36:41	0.775	0.733	0.575	1.103	1.040	1.062	1.029	0.930	0.940	0	
11:36:42	0.779	0.730	0.575	1.088	1.048	1.049	1.018	0.921	0.939	0	
11:36:43	0.769	0.735	0.580	1.100	1.035	1.062	1.013	0.921	0.933	0	
11:36:44	0.770	0.735	0.578	1.097	1.048	1.062	1.019	0.925	0.937	0	

ild 16: Beispiel für eine CSV-Messwertaufzeichnung

Bild 16 zeigt ein Beispiel für eine CSV-Aufzeichnung. Im Kopfteil finden Sie Angaben zum Messgerät und den verwendeten Sensoren. Die Messwerttabelle beginnt mit den Kanaleinstellungen, wie Filter, Kennwerte und Maßeinheiten. Ab Zeile 20 folgen die aufgezeichneten Messwerte von 9 Kanälen und Drehzahl mit Zeitstempel. Für Kanäle ohne Sensor wird statt der Messwerte "IEPE!" gespeichert.

Alternativ kann das Diagramm als BMP-Bildschirmfoto gespeichert werden. Näheres zur Messwertspeicherung finden Sie in Abschnitt 5.

4.3. Modul Frequenzanalyse (FFT)

Dieses Modul ist standardmäßig vorinstalliert. Es führt eine Fouriertransformation (FFT) durch und dient der Darstellung der spektralen Zusammensetzung des Beschleunigungssignals der drei Kanäle von Sensoreingang 1. Im oberen Teile befindet sich die einheitliche Menüleiste, die in Abschnitt 3.3 beschrieben wird.

Bild 17: Messwertanzeige im Modul Frequenzanalyse

Der Frequenzbereich der Analyse erstreckt sich bis 22 kHz.

Zur Darstellung des Spektrums wird die gesamte Bildschirmbreite von 800 Punkten genutzt. Rechts unten sehen Sie zwei Zoomtasten zum Vergrößern bzw. Verkleinern des sichtbaren Frequenzbereichs. Im gewählten Frequenzbereich kann mit dem Scrollbalken navigiert werden. Eine Ausnahme bildet die niedrigste Zoomstufe, in der der gesamte Frequenzbereich auf einer Breite von 460 Punkten dargestellt wird.

Die Skalierung der Amplitudenachse erfolgt über die Plus-/Minus-Tasten.

Rechts bzw. oberhalb vom Diagramm werden die größten Spektralanteile der drei Kanäle mit Frequenz und Amplitude ausgegeben. Außerdem sehen Sie dort die Punktanzahl, mit der die FFT berechnet wird. Sie kann je nach Zoomstufe zwischen 1024 und 32768 liegen und beträgt etwa das 2,2-fache der ausgegeben Punktanzahl. Daraus ergibt sich die Frequenzschrittweite je Punkt, welche ebenfalls angezeigt wird. Hinzu kommen Fensterfunktion, Mittelungs- und Triggermodus.

Der gelbe Messcursor wird mit dem breiteren unteren Ende bewegt. Zusätzlich sind links und rechts gelbe Pfeiltasten zum Bewegen des Cursors in Einzelschritten vorhanden. Im oberen Bereich des Cursors werden die drei Amplituden und die Frequenz am gewählten Punkt ausgegeben.

Alle grafischen und Zahlenwertausgaben erfolgen in der Kennfarbe des jeweiligen Messkanals.

→ Je höher die Punktanzahl, desto länger dauert die Berechnung.

Mit den Tasten II bzw. ► kann die FFT-Berechnung gestoppt bzw. fortgesetzt werden.

FFT Settings 🗸 🗸								
Ampl. axis	logarithmic 🔽	Gain	Х	Auto 🔽				
Windowing	Hann 🔽		Y	Auto 🔽				
Averaging	2x 💌		Ζ	Auto 🔽				
Hold max.		Waterfall mode						
Triggering	Auto 🔽	Waterfall channe (Waterfall FFT only with 1 channel) Waterfall lines	I	1X 🔽 50 🔽				
Bandwidth	22 kHz 🔽	Waterfall interval		<5 s ▼				

Über die Taste 🗙 öffnen Sie das FFT-Menü (Bild 18).

Bild 18: FFT-Menü

Die Einteilung der Amplitudenachse (Ampl. axis) kann zwischen linear und logarithmisch umgeschaltet werden.

Die **Fensterung** (Windowing). Sie bestimmt, mit welcher Gewichtung die gewonnenen Abtastwerte innerhalb eines Ausschnittes (Fenster) in nachfolgende Berechnungen eingehen. Bedingt durch die blockweise Verarbeitung des Signals kommt es in den Randbereichen eines Blocks zu sog. Leck-Effekten, welche die Spektralanteile zu breit erscheinen lassen. Durch die Verwendung einer geeigneten Fensterfunktion lässt sich der Effekt vermindern. Die Fensterfunktion beeinflusst außerdem die Frequenzselektivität und den spektralen Fehler. Die Auswahl der Fensterfunktionen ist ein Kompromiss zwischen Seitenbandunterdrückung und Breite der Spektrallinien.

Bild 19: Im VM100 verwendete Fensterfunktionen (Grafiken: Wikimedia)

Eine **Mittelung** (Averaging) von 2 bis 16 Spektren ist möglich. Damit kann der "Rauschteppich" zufälliger Signalanteile deutlich verringert werden und die Schärfe der Darstellung verbessert werden. Nachteilig wirkt sich die Mittelung auf die Reaktionszeit nach Signaländerungen aus.

Mit der Taste wird die Mittelung neu gestartet

Mit **Max. halten** (Hold max.) werden die vorherigen FFTs nicht gelöscht, sondern übereinander dargestellt (Bild 20). Dadurch können Veränderungen in der spektralen Zusammensetzung des Signals sichtbar gemacht werden. Die früheren Spektren erscheinen dabei in gedämpften Farben.

Bild 20: FFT mit Maximalwerthaltung

Im Menü **Triggerung** (Triggering) kann festgelegt werden, unter welchen Bedingungen eine Frequenzanalyse erfolgt.

- Auto: Die Berechnung erfolgt fortwähren in dem durch die Frequenzauflösung bestimmten Zeitintervall
- DIG1: Die Berechnung erfolgt, wenn am Drehzahleingang ein Impuls erfasst wurde.
- Amplitude: Die Berechnung erfolgt, wenn eine Amplitude innerhalb des Spektrums den festgelegten Grenzwert übersteigt. Der Grenzwert wird als Zahlenwert unterhalb des Trigger-Menüs eingegeben.

Die **Bandbreite** (Bandwidth) kann zwischen 4,5 und 22 kHz umgeschaltet werden. Dabei handelt es sich um die höchste messbare Frequenz. Eine Bandbreite von 4,5 kHz ist vorzuziehen, wenn höhere Frequenzen nicht von Interesse sind, denn dadurch erhöht sich die Frequenzauflösung. Bei Beibehaltung der Auflösung wird die Messung schneller.

Die Verstärkung (Gain) kann zwischen automatischer Verstärkungseinstellung und den festen Verstärkungen von 1, 10 und 100 umgeschaltet werden. In der Regel ist die Einstellung "Auto" empfehlenswert. Nur bei stark schwankenden Amplituden ist eine feste Verstärkung zweckmäßig, um ein fortwährendes Umschalten zu vermeiden.

Im **Wasserfall-Modus** (Waterfall mode) erfolgt eine Pseudo-3D-Darstellung der Spektren. Im "Hintergrund" des aktuell gemessenen Spektrums werden dabei bis zu 50 vorangegangene Spektren abgebildet. Das kann zweckmäßig sein, um beispielsweise beim Hochlaufen oder Auslaufen einer Maschine Resonanzstellen sichtbar zu machen (Bild 21).

Bild 21: FFT mit Wasserfall-Darstellung

Die Wasserfall-Darstellung ist nur für einen Kanal möglich. Dieser wird im Menü ausgewählt. Die Zahl der dargestellten Spektren kann zwischen 10 und 50 eingestellt werden. Das Zeitintervall zwischen zwei benachbarten Spektren ist zwischen 5 und 50 s wählbar.

Zur Wasserfall-Darstellung empfiehlt sich die Wahl einer linearen Amplitudenachse, da so übersichtlichere Grafiken entstehen.

Mit der Taste wird die Historie gelöscht und die Aufzeichnung neu gestartet.

Der Cursor vermisst das aktuell gemessene Spektrum.

Im **Spektrogramm-Modus** wird ebenfalls die Veränderung von Spektren über die Zeit sichtbar. Jede Bildpunktzeile enthält ein Spektrum. Bis zu 340 Spektren können abgebildet werden (Bild 22). Die Amplituden werden als Farben dargestellt. Die höchsten Amplituden sind dabei rot, die geringsten schwarz. Im oberen Bildbereich sehen Sie eine Farbskala mit Beschriftung der Amplituden. Mit den Plus-/Minus-Tasten wird der Amplitudenbereich verändert. Die Spektrogramm-Darstellung ist nur für einen Kanal möglich. Dieser wird im Menü ausgewählt.

Bild 22: Spektrogrammdarstellung

Zur Speicherung (Taste) stehen folgende Optionen zur Verfügung:Als CSV-Datei wird das Spektrum in einer Wertetabelle gespeichert (Bild 23). In den Kopfdaten befinden sich Angaben zu Messgerät, Sensor und FFT-Einstellungen. Ab Zeile 20 folgen die Frequenzpunkte und die zugehörigen Amplituden der drei Kanäle. Die Zeilenzahl hängt von der gewählten Punktanzahl ab.

Wasserfall- und Maximalwert-Daten werden nicht als CSV exportiert. Das Datenformat ist mit der normalen FFT identisch.

Um Spektren zu speichern, die in den Anzeigemodi Wasserfall, Spektrogramm oder Maximalwert halten gemessen wurden, eignet sich die Speicherung als Bildschirm-foto (BMP).

Die gespeicherten Dateien befinden sich auf der SD-Karte im Verzeichnis "FFT".

Weitere Hinweise zum Speichern finden Sie in Abschnitt 5.

FREQUENCY	ANALYSIS (FI	FT)				
Instr.:	VM100A	Serial no.:	123456			
Comment:						
NFC Id:						
Sensor 1X:		Serial no.:		Sensit.:	10.313	mV/m/s²
Sensor 1Y:		Serial no.:		Sensit.:	10.354	mV/m/s²
Sensor 1Z:		Serial no.:		Sensit.:	10.879	mV/m/s²
Date:	21.01.2022					
Time:	07:36:50					
Temp:	20	°C				
Points:	2048					
Window:	Hann					
					_	
					_	
					_	
					_	
			- ()			
Hz	X: m/s ²	Y: m/s ²	Z: m/s²			
4.8	0.011	0.785	0.780			
9.5	0.012	0.067	0.072			
14.3	0.024	0.064	0.061			
19.1	0.037	0.032	0.033			
23.8	0.028	0.053	0.022			
28.6	0.039	0.066	0.041			

Bild 23: FFT-Speicherung als CSV-Tabelle (nur erste sechs Frequenzen gezeigt)

4.4. Modul Amplitude/Drehzahl

Dieses Messmodul stellt den Verlauf der Schwingamplitude in Abhängigkeit von der Drehzahl grafisch dar. Die Hauptanwendung liegt im Auffinden von Resonanzen bei so genannten Hochlauf-/Auslauf-Versuchen. Bild 24 zeigt die Bildschirmausgabe einer Beispielmessung. Im oberen Teil befindet sich die einheitliche Menüleiste, die in Abschnitt 3.3 beschrieben wird.

Voraussetzung für die Messung ist der Anschluss einer Reflex-Lichtschranke VM100-LS (vgl. Bild 68 auf Seite 48) an den Eingang "RPM" des VM100, die als Drehzahlsensor dient.

Die Schwingungsmessung kann auf 1 bis 9 Kanälen erfolgen.

Bild 24: Amplituden-/Drehzahlmessung

Über die Taste 🔀 öffnen Sie das Einstellungsmenü (Bild 25).

Amplitude/RPM Settings						
RPM ramp	Run-up 🔽					
Resolution	20 🔽 1/min					
Better resolution requires longer r	om rampl					
Channel settings	s					
1234	56789					
	✓					

Bild 25: Amplitude/Drehzahl-Menü

Die Einstellung der **Drehzahlrampe** (RPM ramp) bestimmt, in welche Richtung sich die Drehzahl verändern muss, damit die zugehörigen Amplituden aufgezeichnet werden. Zur Auswahl stehen:

- Unbestimmt (Undefined): Sowohl höher werdende als auch abfallende Drehzahlen werden berücksichtigt.
- Hochlauf (Run-up): Nur sich erhöhende Drehzahlen werden berücksichtigt.
- Auslauf (Coast-down): Nur sich verringernde Drehzahlen werden berücksichtigt.

Unter **Auflösung** können Sie bestimmen, wie breit ein Drehzahlschritt im Diagramm sein soll. Je höher der Wert, desto stufiger erscheinen die Amplitudenverläufe. Kleine Werte für die Auflösung liefern kontinuierlichere Verläufe, erfordern aber andererseits eine langsamere Veränderung der Drehzahl, da die Ermittlung der Drehzahl und der dazu gehörigen Amplitude eine gewisse Zeit beansprucht. Gelingt es dem Messgerät nicht, eine Messung in einem Drehzahlintervall zu erfassen, erscheinen dort Lücken im Verlauf. In Bild 24 ist das am linken Diagrammrand ersichtlich.

Die Kanaleinstellungen (Channel settings) erfolgen einzeln für bis zu neun Kanäle. Das Menü ist weitgehend identisch zum Modul Amplitude/Zeit (vgl. S. 11). Auch hier ist es möglich, einen Sensorkanal mit verschiedenen Einstellungen auf mehrere Anzeigekanälen darzustellen.

➔ Schwingweg oder Schwinggeschwindigkeit liefern mitunter klarere Aussagen bei Resonanzen.

Am oberen Rand des Drehzahl-Diagramms (vgl. Bild 24) wird die aktuell gemessene Amplitude der Messkanäle angezeigt. Kanäle ohne Sensor werden nicht ausgegeben. Auf der rechten Seite wird die Drehzahl angezeigt. Wenn keine Impulse erfasst werden, erscheint dort "Keine Rot." ("Stopped"). Der Pfeil darüber kennzeichnet die gewählte Drehzahlrampe.

Mit der Reset-Taste is wird der Diagramminhalt gelöscht und eine neue Messung begonnen.

Sobald Umdrehungen erfasst werden, beginnt die Aufzeichnung der Amplitudengrafik. Ein violetter Pfeil auf der Drehzahlachse markiert die aktuelle Drehzahl.

Die Messung wird entweder durch Anhalten der Rotation oder durch die Taste $\boldsymbol{\mathsf{II}}$ beendet.

Der gelbe Messcursor wird mit dem breiteren unteren Ende bewegt. Zusätzlich sind links und rechts gelbe Pfeiltasten zum Bewegen des Cursors in Einzelschritten vorhanden. Im oberen Bereich des Cursors werden die Amplituden und die Drehzahl am gewählten Punkt ausgegeben.

Mit den Tasten +/- an den Achsen kann das Diagramm umskaliert werden.

Alle grafischen und Zahlenwertausgaben erfolgen in der Kennfarbe des jeweiligen Messkanals.

Während der Aufzeichnung des Diagramms bzw. bei Rotation sind keine Einstellungen möglich.

Zur Speicherung mit stehen folgende Optionen zur Verfügung:Als CSV-Datei wird das Diagramm als Wertetabelle gespeichert (Bild 26).

AMPLITUDE	ROTATION S	PEED							
Instr.:	VM100A	Serial no.:	123456						
Comment:									
NFC Id:									
Sensor 1X:	KS903B10	Ser.:	20014	Sensit.:	10.313	mV/mm/s			
Sensor 1Y:	KS903B10	Ser.:	20014	Sensit.:	10.354	mV/mm/s			
Sensor 1Z:	KS903B10	Ser.:	20014	Sensit.:	10.879	mV/mm/s			
Sensor 2X:		Ser.:		Sensit.:	10.000	mV/m/s²			
Sensor 2Y:		Ser.:		Sensit.:	10.000	mV/m/s²			
Sensor 2Z:		Ser.:		Sensit.:	10.000	mV/m/s²			
Sensor 3X:		Ser.:		Sensit.:	10.313	mV/m/s²			
Sensor 3Y:		Ser.:		Sensit.:	10.354	mV/m/s²			
Sensor 3Z:		Ser.:		Sensit.:	10.879	mV/m/s²			
Date:	21.01.2022	Time:	10:39:23	Temp:	22	°C			
Channel:	1X	1Y	1Z	2X	2Y	2Z	3X	3Y	3Z
HP (Hz):	3	2	2	2	2	2	2	2	2
LP (Hz):	2000	300	2000	4000	4000	4000	4000	4000	4000
Mode:	RMS	RMS	RMS	RMS	RMS	RMS	RMS	RMS	RMS
rpm	mm/s	mm/s	mm/s	m/s²	m/s²	m/s²	m/s²	m/s²	m/s²
0	7.629	9.709	9.485	0.000	0.000	0.000	0.000	0.000	0.000
2	4.978	6.522	6.373	0.000	0.000	0.000	0.000	0.000	0.000
4	25.391	32.789	30.695	0.000	0.000	0.000	0.000	0.000	0.000
6	14.945	22.660	21.217	0.000	0.000	0.000	0.000	0.000	0.000

Bild 26: Als CSV gespeicherte Drehzahl-Amplituden-Messdaten (Ausschnitt)

In den Kopfdaten befinden sich Angaben zu Messgerät, Sensor und Einstellungen. Ab Zeile 20 folgen die Drehzahlwerte mit zugehörigen Amplituden aller Kanäle.

Die gespeicherten Dateien befinden sich auf der SD-Karte im Verzeichnis "AMP-RPM".

Weitere Hinweise zum Speichern finden Sie in Abschnitt 5.

4.5. Modul Maschinenschwingung

4.5.1. Grundlagen

Die von Maschinen erzeugten Schwingungen können Informationen über den Wartungszustand liefern. Schwingungsüberwachung kann nützlich sein, um Maschinenfehler vorherzusagen und damit unerwartete Ausfälle oder größere Folgeschäden zu verhindern. So zeigen sich zum Beispiel Lockerungen, Deformationen oder Unwuchten im Schwingungsverhalten.

Um solche Aussagen zu treffen, ist es nicht unbedingt erforderlich, einen bestimmten Grenzwert einzuhalten. Oft liefert bereits der Verlauf oder Trend der Schwingamplituden über die Zeit ein Aussage über sich anbahnende Probleme. Als "Gut"-Zustand kann ein Basiswert dienen, der im eingelaufenen Neuzustand der Maschine aufgenommen wird. Liegen solche Werte nicht vor, kann auf Entscheidungskriterien aus Normen zurückgegriffen werden, wie sie sich zum Beispiel in der Normenreihe ISO 10816 / ISO 20816 finden.

- ISO 20816-2: Stationäre Gasturbinen, Dampfturbinen und Generatoren über 40 MW mit Gleitlagern und Nenndrehzahlen von 1500 min⁻¹, 1800 min⁻¹, 3000 min⁻¹ und 3600 min⁻¹
- ISO 20816-3: Industriemaschinen mit einer Leistung über 15 kW und Betriebsdrehzahlen zwischen 120 min⁻¹ und 30000 min⁻¹
- ISO 20816-5: Maschinensätze in Wasserkraft- und Pumpspeicheranlagen
- ISO 10816-7: Kreiselpumpen für den industriellen Einsatz
- ISO 20816-8: Hubkolbenkompressoren
- ISO 20816-9: Getriebe
- ISO 14694: Industrieventilatoren

Den oben genannten Normen gemeinsam ist der Effektivwert der Schwinggeschwindigkeit als Überwachungsgröße. Eine Ausnahme bildet die Messung an Hubkolbenkompressoren, bei der zusätzlich der Schwingweg und die Schwingbeschleunigung erfasst werden.

Die Trendüberwachung kann mit dauerhaft installierter Messtechnik erfolgen, z.B. mit den Schwingungswächtern M12, M14 oder VS11 von Metra. Oft ist aber die Installation von Dauerüberwachungen nicht lohnend, nicht möglich oder aus anderen Gründen unerwünscht. In solchen Fällen kommen so genannte Messrouten zur Anwendung, auf denen in möglichst regelmäßigen Zeitabständen an einer festgelegten Anzahl von Maschinen an den immer gleichen Messpunkten Schwingwerte erfasst werden.

Das VM100 hat zwei Überwachungsmodi, die sich grundlegend unterscheiden:

- 1. Überwachung der Schwingstärke (Geschwindigkeit) in drei Richtungen (X/Y/Z) zur Beurteilung von Unwuchten und Laufruhe nach den oben genannten Normen
- 2. Überwachung von Wälzlagern durch einkanalige Messung der Schwingbeschleunigung bis 24 kHz, Effektiv- und Spitzenwerte, spektrale Verteilung, und Hüllkurvenanalyse

4.5.2. Anlegen von Messrouten

Die Messung von Maschinenschwingungen mit dem VM100 erfolgt ein- oder dreiachsig mit dem Beschleunigungsaufnehmer an Eingang 1, Kanal X bzw. X/Y/Z. Metra empfiehlt robuste, elektrisch isolierte Industrietypen, z.B. die einachsigen KS84.100 und KS74C100 oder den dreiachsigen KS813B.

Eine Messroute ist eine Liste zu erfassender Messpunkte, die sich zueinander in räumlicher Nähe befinden. Sie erlaubt eine effektive Erfassung des Zustands vieler Maschinen.

Bild 27 zeigt den Bildschirm nach dem ersten Aufruf des Moduls Maschinenschwingung. Sie sehen die Messroute in Form einer Liste, die zunächst noch leer ist, da keine Messpunkte angelegt wurden. Die Messroute wird unter dem Standard-Dateinamen routes.csv gespeichert. Sie können diese Routendatei zunächst verwenden oder eine neue anlegen.

🕛 Machine	• Monitoring	~ (• 4	05/04/24 13:57:01 1 24 °C	.1 A
Location	Machine	Sensor position	Comment	Intu. days	Date of last meas	ISO
<						
Measurement route file: route.csv (0 points)	Please select a route	point or scan an RFID tag		11.	lle.	

Bild 27: Modul Maschinenschwingung, Messroute noch ohne Messpunkte

Zum Anlegen einer neuen Routendatei berühren Sie die Speicher-Schaltfläche . Geben Sie den Dateinamen für die neue Routendatei ein (Bild 28). Messrouten werden immer als CSV-Datei im Ordner ROUTES der SD-Karte gespeichert. Die Dateiendung wird nicht eingegeben.

4.5.3. Anlegen von Messpunkten in einer Route

Jeder Messpunkt wird als CSV-Datei im Ordner TREND der SD-Karte angelegt. Als Dateiname wird die Messpunkt-ID verwendet. Außerdem wird die Messpunkt-ID in der zugehörigen Messroutendatei gespeichert.

Das VM100 bietet die Möglichkeit der Messstellenidentifikation mit NFC-Tags. Insbesondere bei umfangreicheren Messrouten bzw. einer großen Anzahl von Messobjekten kann dies sehr hilfreich sein, um den Überblick zu bewahren. Sie müssen dazu lediglich ein NFC-Tag am Messort anbringen. Berühren Sie 🛜 zum Starten der Erkennung (Bild 29). Dazu halten Sie die linke obere Ecke des VM100 an das NFC-Tag (vgl. Abschnitt 5.2). Wurde das NFC-Tag erkannt, bestätigen Sie das Anlegen eines neuen Messpunkts. Als Messpunkt-ID erhält dieser die NFC-Seriennummer.

Bild 30: NFC-Tag erkannt

Zum Anlegen eines Messpunkts ohne NFC berühren Sie **D**. Die Messpunkt-ID wird in diesem Fall aus aktuellem Datum und Uhrzeit gebildet.

Es öffnet sich ein Fenster zur Eingabe der Messpunktdaten (Bild 32). Hier geben Sie eine Beschreibung ein und legen Messgröße, Grenzwerte sowie Messintervall fest. Das Messintervall dient zur Kennzeichnung überfälliger Messpunkte (vgl. S. 40).

→ Wenn Sie vor dem Anlegen eines neuen Messpunkts, auch mit NFC-Tag, einen existierenden Messpunkt mit ähnlichem Beschreibungstext durch Berühren der betreffenden Zeile auswählen, werden dessen Beschreibungsdaten als Vorbelegung in den neuen Messpunkt übernommen. Dies kann ggf. die Eingabe vereinfachen.

Unter Ort, Maschine, Position und Kommentar machen tragen Sie mit der Bildschirmtastatur Angaben zum Messpunkt ein, die idealerweise einer Hierarchie vom Allgemeinen hin zum Detail folgt.

Nun wählen Sie einen Überwachungsmodus (Bild 31). Sie können auswählen, ob Effektivwerte (RMS) oder Spitzenwerte (Peak) gemessen werden, in beiden Fällen dreikanalig für X/Y/Z. In den Menüs darunter stellen Sie Integration und Filterung ein. Für die Messung der Schwingstärke können Sie zum Beispiel die gebräuchliche Einstellung RMS, einfache Integration, Hochpass 10 Hz und Tiefpass 1000 Hz wählen.

Alternativ können Sie den Lager-Modus (Bearing) wählen, wenn Sie den Zustand eines Wälzlagers überwachen möchten. Diese Messung erfolgt einkanalig. Die drei Menüeinträge dienen zur Festle-

Bild 31: Überwachungsmodus

gung des verwendeten Sensorausgangs, falls ein dreiachsiger Sensor verwendet wird.

Add a Route	Point	ID: 240405142416	×	\checkmark
Location	Saxonia AG Hall	2		
Machine	Waste water pun	np		
Position	Тор			
Comment	x dir. marked			
ISO Help	RMS (X/Y/Z)	Sensor 1/min 3 avg. no.	30	days
Integration	single 🔽			
High pass	10 Hz 🔽			
Low pass	2000 Hz 🔽	High pass frequency <= 1/3 low pass frequency		
Alarm	7.1 mm/s			
Warning	4.5 mm/s			

Bild 32: Messpunkt anlegen

Im Lager-Modus wird immer Beschleunigung gemessen. Integration steht daher nicht zur Auswahl. Der Tiefpass wird fest auf die höchste Frequenz von 24 kHz eingestellt, um ein möglichst breites Spektrum von Schadfrequenzen zu erfassen. Der Hochpass kann frei gewählt werden. Er dient dazu, tieffrequente Unwuchtvibrationen anderer Maschinenkomponenten fernzuhalten. In vielen Fällen ist ein Hochpass mit 1 kHz zweckmäßig, da Wälzlager-Schadfrequenzen erst bei höheren Frequenzen in Erscheinung treten.

Schwingungsmessungen an Maschinen werden häufig von mehreren Komponenten beeinflusst und können dadurch Kurzzeitschwankungen aufweisen. Für reproduzierbare Messergebnisse kann die Mittelung über eine vorgegebene Anzahl von Anzeigeperioden sinnvoll sein. Der Eintrag werden bestimmt, wie viele Messungen von je einer Sekunde Dauer gemittelt werden. Die Mittelung wird für die Anzeige und die Speicherung der Messwerte angewendet. Bei Eintragung von 1 erfolgt keine Mittelung.

Eine Schwingungsmessung gewinnt an Aussagekraft und Vergleichbarkeit, wenn die Drehzahl mit erfasst wird. Das VM100 erlaubt den Anschluss einer Reflex-Lichtschranke VM100-LS (vgl. Bild 68 auf Seite 48) an den Eingang "RPM" des VM100, die als Drehzahlsensor dient. Erforderlich dafür ist eine Reflexmarke am Rotor. Unter Sensor wird angegeben, ob die Drehzahl gemessen werden soll. In diesem Fall wird "Sensor" angezeigt. Falls die Drehzahl bekannt oder konstant ist, kann hier deren Wert in 1/min eingegeben werden und es erfolgt keine Messung. Zurück zur Anzeige von "Sensor" gelangt man, indem man eine Null eingibt.

Schließlich wird bei 30 days noch das geforderte Messintervall in Tagen angegeben. Es dient zur Erinnerung an eine fällige Messung. Überfällige Messpunkte werden in der Routentabelle rot markiert.

Nun müssen noch Grenzwerte für Voralarm bzw. Warnung und Alarm eingegeben werden.

Nachdem Sie das Messpunktmenü mit 🗹 geschlossen haben, erscheint der neu angelegte Messpunkt mit allen Einstellungen in der Messroutentabelle (Bild 33).

• Bei jeder Änderung einer Messroutendatei (*.csv) wird die vorherige Datei unter gleichem Namen mit der Endung "bak" gesichert. Durch Umbenennung der Endung in "csv" kann die alte Routendatei wieder hergestellt werden.

Die Zeilen der Messroutentabelle erscheinen alphabetisch geordnet nach den Angaben für Ort, Maschine und Sensorposition. Die Sortierrichtung kann durch den Pfeil im Tabellenkopf geändert werden.

🕛 Machir	ne Monitoring	~ (-	18/04/24 14:09:02 24 °C		
Location	Machine	Sensor position Comment		Intu. days	Intu. Date of days last meas		
Saxonia AG Hall 2	: Water pump A	Red circle		30	//	ISO 10816-7	
\checkmark							
Measurement route file: saxonia.csv (1 points)	Please select a route	e point or scan an RFID tag		1	lle.	+	

Bild 33: Messroute mit angelegtem Messpunkt

4.5.4. Assistent für ISO-Normen zur Schwingstärkemessung

Liegen keine Erfahrungswerte für die Warn- und Alarmgrenze vor, kann bei Schwingstärkeüberwachung mit so Help auf die Grenzwerte aus einschlägigen ISO-Normen zurückgegriffen werden.

Es öffnet sich ein Auswahlmenü mit den gebräuchlichsten ISO-Normen zur Schwingstärkemessung an unterschiedlichen Maschinen und den darin enthaltenen Auswahlkriterien (Bild 34). Nach erfolgter Auswahl werden die zugehörigen Grenzwerte für Warnung und Alarm angezeigt. Durch Beenden mit werden diese in das Messpunktmenü übernommen. Auch die Messgrößeneinstellungen erfolgen entsprechend der gewählten Norm.

Für die Wälzlagerüberwachung stehen keine Grenzwertempfehlungen aus ISO-Normen zur Verfügung.

Machine Monitoring Standards Assistant 🛛 🗙 🗸					
Standard	ISO 20816-3: Industrial machine >15 kW				
Group	Medium (15-300 kW), motor shaft height 160-315 mm				
Support	Rigid				
Rotary speed	>600 rpm				
Mode	RMS				
Integration	single				
High pass	10 Hz				
Low pass	1000 Hz				
Alarm	4.5 mm/s				
Warning	2.8 mm/s				

Bild 34: ISO-Normen-Assistent

4.5.5. Messung von Maschinenschwingungen

4.5.5.1. Messbildschirm öffnen

Nachdem ein Messpunkt angelegt wurde, können Messwerte zur Trendüberwachung erfasst werden. Durch Berühren der Zeile mit dem gewünschten Messpunkt in der Routentabellle wird dieser ausgewählt. Die Hintergrundfarbe erscheint danach blau hinterlegt (Bild 35).

🕛 Mac	hine Monitori	ng 🔻	€		08/04/24 14:32:56 25 °C			
Location	Machine	Sensor positi	Sensor position Comment		Intu. Date of days last meas ISO			
Saxonia AG	Hall 2 Waste water Pi	ստր Τοր		30	//			
Measurement rou saxonia.csv (1 po	ite file: iints)		×	``)/∕ mm/s	∲ +			

Bild 35: Messroute mit ausgewähltem Messpunkt

Wurde der Messpunkt mit einem NFC-Tag angelegt, können Sie den Messpunkt nach Berühren von automatisch auswählen lassen.

Über die Schaltfläche 🔀 können Sie den gewählten Messpunkt nachträglich bearbeiten. Dies betrifft Ort, Maschine, Position, Kommentar, Drehzahl, Mittelung, Messintervall und Grenzwerte. Die Angaben zur Messgröße können aus Gründen der Konsistenz mit bereits gespeicherten Messungen nicht mehr bearbeitet werden.

Mit 🔟 lässt sich der ausgewählte Messpunkt aus der Messroute löschen.

→ Die Datei mit den Messwerten wird dadurch nicht von der SD-Karte gelöscht.

Berühren Sie men, um in die Mess- und Trendansicht zu wechseln (Bild 36).

4.5.5.2. Messung der Schwingstärke

Im Folgenden wird zunächst die Anzeige zur Schwingstärkemessung im RMS-/ Peak- bzw. ISO-Modus erläutert (Bild 36).

Bild 36: Schwingstärkemessung im RMS-/Peak-/ISO-Modus

4.5.5.2.1 Anzeige von Kennwerten und Phasenwinkeln

Nach einer 15-sekündigen Einschwingzeit sehen Sie im linken Bereich unter den Angaben zur Messstelle die aktuell gemessenen Schwingwerte für X/Y/Z in der Maßeinheit der gewählten Schwinggröße. Dies können Effektiv- oder Spitzenwerte von Beschleunigung, Geschwindigkeit oder Weg sein. Die eingestellten Filter werden ebenfalls angezeigt. Die Messwerte werden gemäß Einstellung gemittelt (Klammerwert in Sekunden). Die Filter- und Messgrößeneinstellungen der drei Richtungswerte X/Y/Z sind immer gleich.

Der Amplitudenwerte werden mit mit den in der Routentabelle hinterlegten Warn- und Alarm-Grenzwerten verglichen. Bei Überschreitung erscheint ein gelbes warn- bzw. rotes Alarmsymbol (Bild 37).

Bild 37: Alarmsymbol

Darunter finden Sie die Phasenwinkel der drei Messwerte. Die Beobachtung der Phasenwinkel über einen längeren Zeitraum liefert feinfühlige Informationen bei Änderung des Maschinenzustands. Relevant sind dabei nicht die absoluten Phasenwinkel, sondern die relativen Phasenunterschiede zwischen den drei Kanälen.

Das VM100 unterstützt zwei Verfahren der Phasenmessung:

- Phase relativ zu einem Triggerimpuls: Dieses Verfahren ist zu bevorzugen, weil es zuverlässigere Ergebnisse liefert, insbesondere bei Überlagerungen verschiedener Schwingfrequenzen und verrauschten Signalen. Den Triggerimpuls liefern ein Drehzahlsensor VM100-LS (vgl. Bild 68 auf Seite 48) am Eingang "RPM" des VM100 und eine Reflexmarke am Rotor. Das Häkchen bei metern im Attiviert den Triggerimpuls. Bei Erkennung eines Drehzahlwerts (rechte obere Bildschirmecke) wird es automatisch gesetzt. Ansonsten wird statt der Phasenwinkel "Rot.?" angezeigt.
- Phase relativ zwischen den Kanälen X/Y/Z: Besteht nicht die Möglichkeit, einen Drehzahlsensor einzusetzen, können die Phasenwinkel zwischen den Kanälen durch Kreuzkorrelation ermittelt werden. Kanal X liefert die Bezugsphase und wird auf Null gesetzt. Die Kanäle Y und Z zeigen die Phasenlage relativ zu X an.

Der Wertebereich der Phasenmessung ist -180° bis 180°.

- → Instabile Phasenwinkel oder ein häufiger Vorzeichenwechsel sind Hinweise auf eine unzuverlässige Erkennung der Hauptfrequenz durch überlagerte Störungen.
- ➔ Bei Messungen nach ISO 20816-8 mit Beschleunigung, Geschwindigkeit und Weg werden aus Platzgründen keine Phasenwinkel ausgegeben (Bild 38).

Bild 38: Messwertanzeige für Hubkolbenmaschinen nach ISO 20816-8

4.5.5.2.2 Kurzzeittrend der Kennwerte

In der oberen Bildschirmmitte wird der Kurzzeittrend der drei Schwingwerte der letzten 270 Sekunden grafisch dargestellt. Die Farbzuordnung entspricht der Messwertanzeige. Es handelt sich dabei um die ungemittelten Messwerte. Das Diagramm enthält auch die beiden Grenzwertlinien für Warnung (gelb) und Alarm (rot). Es wird automatisch so skaliert, dass sowohl der Maximalwert als auch die Grenzwerte dargestellt werden.

Rechts neben dem Diagramm werden die drei Mittelwerte und Schwankungsbreiten in Prozent ausgegeben. Die Farbe der Prozentangaben wird gelb ab 50 % und rot ab 100 %.

Der Kurzzeittrend liefert überblicksartig Informationen über Stabilität und Plausibilität der Messwerte. Bei Schwankungen von mehr als 100 % sollte eine sofortige Abklärung auf Messfehler oder akuten Maschinenschaden erfolgen.

Alternativ kann auch auf den Kurzzeittrend der Phasenwinkel umgeschaltet werden (Bild 39).

Die grafische Darstellung der Phase kann auch genutzt werden, um Resonanzstellen bei veränderlicher Drehzahl zu bestimmen.

Mit kirk wird der Kurzzeittrend gelöscht und die Aufzeichnung neu begonnen.

4.5.5.2.3 Frequenzspektrum (FFT)

Bild 39: Kurzzeittrend der Phase

In der unteren Bildmitte finden Sie die spektrale Darstellung der gemessenen Schwinggröße im Bereich von 3 bis 300 Hz (Bild 40). Dies kann helfen, um die Schwingungen bestimmten Komponenten der Maschine zuzuordnen. Die vom Sensor gemessene bzw. fest eingegebene Drehfrequenz wird als Spektrallinie mit der Beschriftung "RPM" angezeigt. Die Farbzuordnung der Schwingfrequenzspektren entspricht der Messwertanzeige. Rechts neben dem Spektrum finden Sie eine Liste der sechs größten Amplituden für den gewählten Messkanal. Die Drehfrequenz wird in der Farbe der Drehzahl dargestellt und mit der Markierung "x1" für die Grundschwingung versehen. Eventuell auftretende Harmonische, also ganzzahlige Vielfache der Drehfrequenz, werden ebenfalls markiert. Harmonische treten z.B. durch Ausrichtfehler gekoppelter Rotoren, Zahneingriffsfrequenzen in Getrieben oder Schaufelpassierfrequenzen bei Gebläsen auf. Auch lose Auflagepunkte von Maschinen (Kippfuß) können über Harmonische erkannt werden.

10.0 mm/s RMS RPM	FFT	Main	frequenc	ies [1X 🔽
×2 ×3		No.	mm/s	Hz	
7.5		1	3.4	24	x1
		2	0.3	48	x2
5.0		3	0.2	72	xЗ
		4	0.1	95	
2.5		5	0.1	119	
40 80 120 160 200 240 280	Hz 320	6	0.1	7	

Bild 40: Frequenzspektrum und Hauptfrequenzen

4.5.5.2.4 Anzeige der Langzeittrends von Schwingstärke und Phase

Durch Drücken von in der Messwertanzeige öffnet sich das Trenddiagramm der Schwingstärke bzw. des Phasenwinkels. Es veranschaulicht die Entwicklung der Messwerte und damit des Maschinenzustands über die gesamte Dauer der Überwachung. Das können Wochen, Monate oder auch Jahre sein. Die Daten werden aus der Datei TREND_*.csv aus dem Ordner TREND entnommen. Die Bilder 41 und 42 zeigen ein Beispiel.

Im Diagramm der Schwingstärke werden auch die Warn- und Alarmgrenze eingeblendet.

Bild 41: Langzeittrend der Schwingstärke

Bild 42: Langzeittrend der Phase

4.5.5.3. Messung von Wälzlagerschwingungen

Neben der Schwingstärke können auch die Schwingungen an Wälzlagern gemessen werden. Das VM100 bietet hierzu eine Reihe von Analysefunktionen, mit denen ohne tiefgehende Kenntnis der Wälzlagerdiagnose eine Aussage zum Zustand des Lagers gemacht werden kann. Anders als bei der Schwingstärke werden hier einkanalig hohe Frequenzen im Kilohertzbereich betrachtet, wo sich die Schadensbilder hauptsächlich äußern. Es wird immer die Beschleunigung gemessen. Wie in Bild 31 auf Seite 27 gezeigt, wird der verwendete Sensorkanal (X/Y/Z) beim Anlegen der Messstelle festgelegt. Bild 43 zeigt den Aufbau des Messbildschirms.

Alle Messwerte und Grafiken werden in der Farbe des festgelegten Kanals dargestellt.

➔ Für eine zuverlässige Übertragung hoher Schwingfrequenzen muss der Sensor möglichst nah am Wälzlager befestigt werden. Der Befestigungspunkt muss eben und glatt sein.

Bild 43: Messung im Wälzlagermodus

4.5.5.3.1 Anzeige der Schwingungskennwerte

Im linken Bildschirmteil, unterhalb der Messstellenangaben, werden die drei für Wälzlager relevanten Breitbandkennwerte Spitzenwert, Effektivwert und Scheitelfaktor der Beschleunigung angezeigt. Sie werden jeweils ab der eingegebenen Hochpassfrequenz bis 24 kHz bestimmt (vgl. Kap. 4.5.3). Es wird die beim Anlegen des Messpunkts eingestellte Mittelung angewendet (Klammerwert in Sekunden).

Der Scheitelfaktor, auch Crest-Faktor genannt, ist der Quotient aus Spitzen- und Effektivwert und demzufolge einheitenlos. Er ist ein Maß für "Spitzenhaltigkeit" eines Signals. Für eine reine Sinusschwingung beträgt der Scheitelfaktor $\sqrt{2}$. Sind steilflankige Impulse vorhanden, wie sie beim Überrollen schadhafter Stellen im Wälzlager entstehen, steigt der Scheitelfaktor deutlich an und kann Werte über 10 erreichen.

Der Spitzenwert wird mit mit den in der Routentabelle hinterlegten Warn- und Alarm-Grenzwerten verglichen. Bei Überschreitung erscheint ein gelbes warn- bzw. rotes Alarmsymbol (Bild 44).

Bild 44: Warnsymbol

4.5.5.3.2 Kurzzeittrend des Spitzenwerts

In der oberen Bildschirmmitte wird der Kurzzeittrend des Spitzenwerts der letzten 270 Sekunden grafisch dargestellt. Es handelt sich dabei um die ungemittelten Messwerte. Das Diagramm enthält auch die beiden in der Routentabelle angegebenen Grenzwertlinien für Warnung (gelb) und Alarm (rot). Die Amplitudenachse wird automatisch so skaliert, dass sowohl der Maximalwert als auch die Grenzwerte dargestellt werden.

Rechts neben dem Diagramm werden der Mittelwert und die Schwankungsbreite in Prozent ausgegeben.

Mit Swird der Kurzzeittrend gelöscht und die Aufzeichnung neu begonnen.

Der Kurzzeittrend liefert überblicksartig Informationen über Stabilität und Plausibilität der Messwerte.

4.5.5.3.3 Hüllkurvenspektrum

Die Hüllkurvenanalyse ist ein sehr leistungsstarkes Werkzeug in der Wälzlagerdiagnose. In der unteren Bildschirmmitte sehen Sie das Spektrum der Hüllkurve. Die Hüllkurve wird gebildet, indem man das Signal gleichrichtet und tiefpassfiltert. Das Ergebnis durchläuft eine Frequenzanalyse (FFT), deren Ergebnis Sie im Diagramm sehen. Anders als die Frequenzanalyse des direkten Schwingsignals lässt die Hüllkurvenanalyse periodische Signalanteile, wie sie bei geschädigten Wälzlagern entstehen, besonders deutlich hervortreten.

Die Amplitudenachse ist als Spitzenwert der Beschleunigung skaliert. Im Diagramm werden Warn- und Alarmgrenzen als gelbe und rote Linien dargestellt. Dabei handelt es sich um folgende Erfahrungswerte ("Einser-Regel" nach D. Franke):

- $<0.075 \text{ m/s}^2$: Keine Fehler
- 0,075 m/s²: Warngrenze für Fehler
- 0,15 m/s²: Alarmgrenze für Fehler
- 0,75 m/s²: Warngrenze für Schäden
- Alarmgrenze für Schäden • 1.5 m/s^2 :

Fehler sind in diesem Zusammenhang verschleißbedingte Veränderungen, mit denen ein Weiterbetrieb möglich ist. Schäden sind hingegen gravierende Veränderungen, die eine Reparatur erforderlich machen.

Je nach vorliegender Maximalamplitude werden entweder die Grenzen für Fehler (Fault) oder für Schäden (Damage) angezeigt.

Die Abbildungen 45 und 46 zeigen den Unterschied zwischen einem leicht verschlissenen und einem schadhaften Kugellager (Amplitudenskalierung beachten).

46: Hüllkurvenspektrum Bild leicht verschlissenen Kugellagers ohne gleichen Lagers mit Innenringschaden Schäden

Rechts neben dem Hüllkurvenspektrum werden die sechs größten Spektralamplituden und die zugehörigen Frequenzen angezeigt (Bild 47).

Bei der hier eingesetzten Hüllkurvenanalyse handelt es sich um ein vereinfachtes Werkzeug für Routenmessungen. Sie ist nicht dafür gedacht, Schäden im Detail zu diagnostizieren. Hierzu eignen sich spezielle Analysatoren, wie das Hüllkurven-Modul des VM100 (Abschnitt 4.6).

4.5.5.3.4 Frequenzbänder

Dieser Anzeigebereich gibt einen Überblick, ob die dominanten Schwingfrequenzen im unteren, mittleren oder oberen Frequenzbereich vorliegen. Bei fortschreitendem Schadensverlauf lässt sich aus dem Trend dieser Messwerte eine Aussage ableiten. Je stärker die Schädigung, desto mehr verlagern sich die Schadfrequenzen in Richtung tieferer Frequenzen.

4.5.5.3.5 Anzeige der Langzeittrends

Durch Drücken von in der Messwertanzeige öffnet sich das

Trenddiagramm der von Spitzenwert, Effektivwert oder Scheitelfaktor. Es veranschaulicht die Entwicklung der Messwerte und damit des Lagerzustands über die gesamte Dauer der Überwachung. Das können Wochen, Monate oder auch Jahre sein. Die Daten werden aus der Datei TREND_*.csv aus dem Ordner TREND entnommen. Bild 49 zeigt ein Beispiel.

Im Diagramm des Spitzenwerts werden auch die Warn- und Alarmgrenzen eingeblendet.

Bild 49: Spitzenwert-Langzeittrend

Envelope Bands
Bild 47: Ampl tudenliste
6 33 Hz: 0.74 m/s ²
5 238 Hz: 0.77 m/s ²
4 319 Hz: 0.79 m/s ²
3 15 Hz: 1.26 m/s ²
2 48 Hz: 1.78 m/s ²

Envelope

Main frequencies

80 Hz: 2.13 m/s

Bands

Bild 48: Frequenzbänder

4.5.6. Speicherung von Messungen

Im Messbildschirm finden Sie drei Möglichkeiten der Speicherung (Bild 50).

- CSV: Alle angezeigten Messwerte werden mit Zeitstempel in einer Tabelle des entsprechenden Messpunkts im CSV-Format auf SD-Karte im Verzeichnis TREND gespeichert, um eine Trendansicht zu ermöglichen. Die CSV-Dateien können Sie auch in ein Tabellenkalkulationsprogramm einlesen. Bild 54 zeigt ein Beispiel.
- BMP: Ein Abbild (Screenshot) des Messbildschirms, jedoch mit ausgeblendeten Bedienelementen, wird als Bitmap-Grafik (Dateiendung bmp) auf SD-Karte im Verzeichnis TREND gespeichert. Der Dateiname wird aus "MEAS", der Messpunktkennung sowie Datum und Uhrzeit gebildet, z.B.:

MEAS 240410125946 100424 153447.bmp

• WAV: Ermöglicht die Rohdatenaufzeichnung der erfassten Samples eines Messkanals im Wave-Format auf SD-Karte im Verzeichnis TREND gespeichert. Es wird 20 Sekunden lang ein Kanal mit einer Abtastrate von 48828 Samples/Sekunde mit 24 Bit Auflösung aufgezeichnet (Bilder 51 und 52). Bei den Samples handelt es sich um die Rohdaten des Analog-Digital-Wandlers. Die Verstärkung (1/10/100) kann vor dem Speichern festgelegt werden. Der Aussteuerbereich ist dementsprechend ± 10 V, ± 1 V oder ± 0.1 V. In den Kopfdaten wird ein Kommentarblock ICMT abgelegt, der Informationen zur Gerät und Einstellungen enthält. Beispiel:

VM100A 22136 001.010 001.042. 001.147 100 1X Enthalten sind der Gerätetyp, dessen Seriennummer, die Sensorempfindlichkeiten 1X/1Y/1Z, die Verstärkung (1/10/100) und der verwendete Kanal. Der Dateiname wird aus "MEAS", der Messpunktkennung sowie Datum und Uhrzeit gebildet, z.B.:

MEAS 240410125946 100424 153658.wav

Bild 52: WAV-Rohdatenmenü

Bild 51: WAV-Rohdatenspeicherung

Bild 50: Speicherfunktionen

Das Datum der zuletzt als CSV gespeicherten Messung wird in der der Messroutentabelle für jeden Messpunkt angezeigt. Mit Hilfe des Datums stellt das VM100 fest, ob es noch innerhalb des festgelegten Messintervalls (vgl. Abschnitt 4.5.3) liegt oder ob eine neue Messung fällig ist. Bild 55 zeigt ein Beispiel.

Intu. Date of days last meas ISO 12/04/24 Bild 53: Spei-

Die Farben bedeuten:

Die Farben b	edeuten: cherdatum
Grün:	Die letzte Messung liegt innerhalb des Messintervalls
Orange:	Das Messintervall wurde um maximal 20 % überschritten
Dunkelrot:	Das Messintervall wurde um mehr als 20 % überschritten
Hellrot:	Das Messintervall wurde um mehr als 100 % überschritten

Bild 54: Beispiel für eine CSV-Messpunktdatei mit Wälzlagerdaten

() Machine	e Monitoring	• (i		÷	12/04/24 10:29:39 23 °C	1.1 A
Location	Machine	Sensor position	Comment	Intu. days	Date of last meas	, ISO
Saxonia AG Hall 1	Compressor 2C	Cylinder		10	12/04/24	ISO 208:
Saxonia AG Hall 1	Fan Al	Motor	left	15	25/03/24	
Saxonia AG Hall 1	Fan AZ	Motor	bottom	15	15/03/24	Γ
Saxonia AG Hall 1	Fan A3	Motor	bottom	15	12/02/24	
Saxonia AG Hall 1	Fan dryer 1	Motor	bottom	15	12/04/24	
Saxonia AG Hall 1	Fan dryer 2	Motor	side	15	10/04/24	ISO 146!
Saxonia AG Hall 1	Gear box dru	Bearing z		30	06/04/24	
Measurement route file: saxonia.csv (14 points)	Please select a route	point or scan an RFID tag		11.		+

Bild 55: Messroutentabelle mit farblicher Kennzeichnung fälliger Messpunkte

→ Es wird dringend empfohlen, regelmäßig Sicherungskopien der auf der SD-Karte gespeicherten Routendaten anzulegen.

4.6. Modul Hüllkurvenanalyse

4.6.1. Grundlagen

Die Hüllkurvenanalyse ist ein Verfahren zur Wälzlagerdiagnose. Ein Wälzlager, bestehend aus Außenring, Innenring, Wälzkörpern und Käfig, erzeugt bei Rotation bestimmte charakteristische Überrollfrequenzen, die in einem durch die Konstruktion vorgegebenen Verhältnis zur Rotordrehfrequenz stehen. Aus einer erhöhten spektralen Amplitude bei einer dieser charakteristischen Frequenzen lassen sich Rückschlüsse auf Schädigungen ziehen.

Mit einer gewöhnlichen Fouriertransformation (FFT) ist es kaum möglich, die relativ schwach ausgeprägten Überrollimpulse aus dem Schwingspektrum eines Wälzlagers zu extrahieren. Bewährt hat sich zu diesem Zweck die Hüllkurvenanalyse. Durch Bandpassfilterung und schnelle Spitzenwertgleichrichtung wird zunächst die Hüllkurve des Beschleunigungssignals gebildet (Bild 56).

Bild 56: Hüllkurve eines Signals (Wikimedia Commons)

Die Hüllkurve durchläuft im Anschluss eine Fouriertransformation (FFT). Ergebnis ist eine spektrale Darstellung, aus der sich die Überrollfrequenzen deutlich hervorheben.

Ein ungeschädigtes Wälzlager hat in der Regel im Hüllkurvenspektrum nur eine markante Amplitude bei der Rotordrehfrequenz. Bei entstehenden Schäden werden die Überrollfrequenzen als Grundfrequenz sichtbar. Die Amplituden steigen mit zunehmender Schädigung.

Voraussetzung für die Hüllkurvenanalyse sind eine bekannte Rotordrehzahl und die Geometrie des Wälzlagers zur Berechnung der Schadfrequenzen. Wälzlagerhersteller stellen diese Werte in der Regel auf ihren Internetseiten zur Verfügung.

4.6.2. Messung

Zur Messung kommt ein einachsiger Beschleunigungsaufnehmer bzw. eine Achse eines Triaxialaufnehmers zum Einsatz. Empfohlen werden robuste, elektrisch isolierte Industrietypen. Der lineare Frequenzbereich sollte mindestens 10 kHz betragen.

Dieses Modul gibt das Hüllkurvenspektrum eines Messkanals aus (Bild 57).

Im oberen Teil befindet sich die einheitliche Menüleiste, die in Abschnitt 3.3 beschrieben wird.

Bild 57: Messwertanzeige im Modul Hüllkurvenanalyse

Zur Darstellung des Hüllkurvenspektrums wird die gesamte Bildschirmbreite von 800 Punkten genutzt. Rechts unten sehen Sie eine Zoomtaste zum Vergrößern bzw. Verkleinern des sichtbaren Frequenzbereichs. Im höher aufgelösten Frequenzbereich kann mit dem Scrollbalken navigiert werden. Die Skalierung der logarithmischen Amplitudenachse erfolgt über die Plus-/Minus-Tasten. Rechts oben wird die Drehzahl angezeigt. Am oberen Rand des Diagramms werden die gewählten Einstellungen ausgegeben, das sind Messkanal, Hochpassfrequenz, Auflösung, Mittelung, Verstärkung und Wälzlagertyp.

Im Hüllkurvenspektrum werden bis zu fünf farbige Marker angezeigt, deren Position vom gewählten Wälzlager und der Drehzahl abhängt. Diese haben folgende Bedeutung:

RPM (revolutions per minute):	Drehfrequenz
BPFI (ball passing frequency inner race):	Innenring-Schadfrequenz
BPFO (ball passing frequency outer race):	Außenring-Schadfrequenz
BSF (ball spin frequency):	Wälzkörper-Schadfrequenz
FTF (fundamental train frequency):	Käfig-Schadfrequenz

Das Beispiel in Bild 57 zeigt die größte Amplitude beim Marker BPFI, was auf einen Schaden am Innenring des Lagers hindeutet.

Der gelbe Messcursor wird mit dem breiteren unteren Ende bewegt. Zusätzlich sind links und rechts gelbe Pfeiltasten zum Bewegen des Cursors in Einzelschritten vorhanden. Im oberen Bereich des Cursors werden Amplitude und Frequenz ausgegeben.

Alle grafischen und Zahlenwertausgaben erfolgen in der Kennfarbe des gewählten Messkanals.

Mit den Tasten II bzw. \blacktriangleright kann die FFT-Berechnung gestoppt bzw. fortgesetzt werden.

Über die Taste 🗙 öffnen Sie das Einstellmenü (Bild 58).

Envelope Analysis Settings							
Sensor	1X 💌	RPM sei	\checkmark				
High pass (Hz)	1000 💌	RPM inp					
Gain	100 🔽	Bearing m	arker frequencies				
Averaging	10x 🔽	Туре:)2				
		BPFI (inner race)		4.94			
		BPFO (outer race)	3.06			
		FTF (ca	age)	0.38			
		BSF (ro	olling elements) Touch frequencies to swite	2.00 ch markers on/off.			

Bild 58: Einstellmenü für die Hüllkurvenanalyse

Mit Sensor wählen Sie, welcher Kanal von Eingang 1 analysiert wird.

Der **Hochpass** (High pass) dient zur Unterdrückung tieffrequenter Schwingungskomponenten, z.B. durch Unwuchten.

Im Menü **Verstärkung** (Gain) kann zwischen automatischer Verstärkungseinstellung und den festen Verstärkungen 1, 10 und 100 gewählt werden. In der Regel ist die Einstellung "Auto" zu empfehlen.

Eine **Mittelung** (Averaging) von 2 bis 16 Spektren ist möglich. Damit kann der "Rauschteppich" zufälliger Signalanteile deutlich verringert werden und die Schärfe der Darstellung verbessert werden. Nachteilig wirkt sich die Mittelung auf die Messdauer aus.

Wählen Sie **Drehzahlsensor** (RPM sensor), wenn Sie die Drehzahl messen können. Voraussetzung dafür ist der Anschluss einer Reflex-Lichtschranke VM-PS2 an den Eingang "RPM" des VM100 und die Anbringung einer Reflexmarke auf dem Rotor.

Ist die Drehzahl bekannt, kann sie statt einer Messung auch manuell eingetragen werden, nachdem das Häkchen entfernt wurde.

Voraussetzung zur Anzeige der Schadfrequenzen im Spektrum ist die Eingabe der **Wälzlager-Frequenzmarken** (Bearing marker frequencies). Dies geschieht durch Berühren des Feldes **Typ** (Type). Es öffnet sich eine Liste mit den bereits eingetragenen Lagertypen. Auf der SD-Karte befindet sich diese in der Datei *bearings.csv* im Ordner *BEARINGS*. Dateiname und Ordner sind fest vorgegeben. Befindet sich noch keine solche Datei auf der SD-Karte, wird sie erstellt und mit einem Demo-Eintrag für das Wälzlager Typ 6202 abgespeichert.

Beim Speichern der geänderten Datei wird die vorherige Version als *bearings.bak* abgelegt. Durch Umbenennung in *bearings.csv* kann nach versehentlichen Änderungen der vorherige Zustand wieder hergestellt werden.

Bearing List			Ī	+ ~
Туре	▲ BPFI	BPFO	FTF	BSF
6202	4.95	3.05	0.381	1.986
FAG 6202	4.94	3.06	0.38	2.00
ISO 7000D	6.13	3.87	0.39	1.90
SKF 23960C	18.30	15.70	0.46	6.46
SNR 6206N	5.43	3.57	4.62	2.31

Bild 59: Wälzlagerliste

Berühren Sie **H**, um ein neues Wälzlager hinzuzufügen. Es öffnet sich ein Menü zur Eingabe der Schadfrequenzen (Bild 60).

Add Bea	ring	\checkmark	×
Туре:			
BPFI (inr	ier race)		
BPFO (o	uter race)		
FTF (cag	le)		
BSF (roll	ing elements)		

Bild 60: Eingabe der Schadfrequenzen

Die Eintragung des Lagernamens und der Schadfrequenzen erfolgt nach Berühren des entsprechenden Eingabefelds über eine Bildschirmtastatur. Die Schadfrequenzen (vgl. S. 42) werden relativ zur Drehfrequenz als einheitenlose Faktoren eingetragen. Sie finden diese entweder in Listen, die Wälzlagerhersteller auf ihren Internetseiten bereitstellen oder Sie berechnen diese selbst mit ebenfalls im Internet vorhandenen Schadfrequenzrechnern auf Basis der Lagergeometrie, d.h. Wälzkörperzahl und - durchmesser, Mittenabstand zweier gegenüber liegender Wälzkörper (Pitch).

$$BPFO = RPM \frac{N_B}{2} (1 - \frac{B_D}{P_D} \cos(\beta)) \qquad BPFI = RPM \frac{N_B}{2} (1 + \frac{B_D}{P_D} \cos(\beta))$$

$$BSF = RPM \frac{P_D}{B_D} \left[1 - \left(\frac{B_D}{P_D}\cos(\beta)\right)^2\right] \qquad FTF = \frac{RPM}{2} \left(1 - \frac{B_D}{P_D}\cos(\beta)\right)$$

Mit der Taste in können Sie die ausgewählte Zeile löschen.

Durch Berühren der Schadfrequenzwerte im Einstellmenü (Bild 58) lassen sich deren Marker im Messbildschirm ausblenden.

Zur Speicherung (Taste) stehen folgende Optionen zur Verfügung: Als CSV-Datei wird das Hüllkurvenspektrum in einer Wertetabelle gespeichert (Bild 61). In den Kopfdaten befinden sich Angaben zu Messgerät, Sensor und Wälzlager. Ab Zeile 14 finden Sie die relativen Schadfrequenzen als Faktor und die gemessenen Frequenzen bei der Drehfrequenz. Die gemessene bzw. eingetragene Drehzahl findet sich in Zeile 18. Ab Zeile 20 folgen die Frequenzpunkte und die zugehörigen Amplituden. Die Zeilenzahl hängt von der gewählten Auflösung ab.

ENVELOPE ANALYSIS						
Instr.:	VM100A	Serial no.:	123456			
Comment:						
NFC Id:						
Sensor 1X:	KS903B10	Serial no.:	20014	Sensit.:	1,0313	mV/ms^-2
Sensor 1Y:	KS903B10	Serial no.:	20014	Sensit.:	1,0354	mV/ms^-2
Sensor 1Z:	KS903B10	Serial no.:	20014	Sensit.:	1,0879	mV/ms^-2
Date:	02/02/22					
Time:	16:54:53					
Temp:	21	°C				
High pass	1000	Hz				
Averaging	3x					
Bearing	FAG 6202					
BPFI	4,94	245	Hz			
BPFO	3,06	151	Hz			
FTF	0,38	19	Hz			
BSF	2	99	Hz			
Rot. speed	2970	1/min				
Hz	1Y: m/s²					
0,7	6,854					
1,5	0,107					
2,2	0,377					
3	0,73					
3,7	0,433					
4,5	0,063					
5,2	0,046					

Bild 61: CSV-Datei mit Messdaten (nur erste sieben Frequenzpunkte)

Alternativ kann das Diagramm als BMP-Bildschirmfoto gespeichert werden. Näheres zur Messwertspeicherung finden Sie in Abschnitt 5.

4.7. Modul Auswuchtung

4.7.1. Grundlagen

Unwuchten treten in Erscheinung, wenn Massen rotieren, deren Masseschwerpunkt nicht auf der Rotationsachse liegt. Es entsteht eine Fliehkraft in Richtung der Unwuchtmasse (Bild 63). Diese Fliehkraft nimmt mit dem Quadrat der Rotationsgeschwindigkeit zu.

Bild 63: Rotor mit Unwucht

Bild 62: Ausgewuchteter Rotor

Folge davon sind Vibrationen, die oft unerwünscht sind, weil sie die Produktqualität beeinträchtigen, die Lebensdauer verringern oder zu störenden Geräuschen führen. Ziel des Auswuchtens ist die Verringerung der Unwucht durch Veränderung der Masseverteilung (Bild 62).

Der Betrag der außerhalb der Rotationsachse befindlichen Masse multipliziert mit dem radialen Abstand zur Schaftachse wird als Unwucht bezeichnet. Als Einheit wird oft gmm (Gramm-Millimeter) verwendet. Die Unwucht wird außerdem durch ihre Richtung charakterisiert. Die Kombination aus Betrag und Richtung wird als Vektor bezeichnet. Zweckmäßigerweise verwendet man zur grafischen Darstellung einer Unwucht Polarkoordinaten.

Man unterscheidet folgende Typen von Unwuchten:

Eine **Statische Unwucht** tritt auf, wenn die Rotorachse und die Massenachse nicht deckungsgleich sind, aber beide Achsen <u>parallel</u> zueinander liegen. Bild 64 zeigt die Größe und Richtung der entstehenden Unwuchtkräfte. Die Krafteinwirkung auf beide Lager ist gleich.

Bild 64: Statische Unwucht

Eine **Momentenunwucht** tritt in Erscheinung, wenn die Rotorachse und die Massenachse nicht deckungsgleich sind und wenn <u>beide Achsen sich im Masseschwer-</u> <u>punkt schneiden</u>. Die entstehende Krafteinwirkung auf die Lager ist betragsmäßig gleich und richtungsmäßig um 180° verschieden (Bild 65).

Bild 65: Momentenunwucht

Eine **Dynamische Unwucht** liegt vor, wenn die Rotorachse und die Massenachse nicht deckungsgleich sind und wenn sich <u>beide Achsen außerhalb des Masseschwerpunkts schneiden</u>. Man nennt diesen Fall auch Zweiebenen-Unwucht. Dynamische Unwucht ist eine Kombination aus statischer und Momentenunwucht (Bild 66).

Bild 66: Dynamische Unwucht

Die rotierende Fliehkraft überträgt sich auf die Lagerung des Rotors und kann dort mit Beschleunigungsaufnehmern erfasst werden. Je nachdem, ob man an einer oder zwei Lagerungen misst, spricht man von **Ein- oder Zweiebenen-Auswuchtung**. Für scheibenförmige Rotoren genügt oft die Einebenen-Auswuchtung, während längliche Rotoren in zwei Ebenen gewuchtet werden sollten. Als Faustformel gilt, dass Rotoren mit einer Länge, die größer als der doppelte Durchmesser ist, eine Zweiebenen-Auswuchtung erfordern.

Die Norm ISO 1940 vermittelt Grundwissen zur Auswuchtung.

Neben ein oder zwei Beschleunigungsaufnehmern ist ein Drehzahlsensor erforderlich, der die Winkelinformation zur Auswuchtung liefert.

Das VM100 unterstützt die Auswuchtung im Betriebszustand. Der Rotor kann im eingebauten Zustand verbleiben und braucht nicht in eine Wuchtbank transportiert zu werden. Das Betriebswuchten verläuft in folgenden Schritten:

- 3. Im Urunwuchtlauf werden die Schwingungen des Rotors im Ausgangszustand erfasst.
- 4. Im **Testlauf** wird eine bekannte Testmasse bei einer bekannten Winkelposition an einem Ende des Rotors angebracht. Damit erzeugt man eine definierte Unwucht. Das resultierende Schwingverhalten wird erfasst.
- 5. Bei Zweiebenen-Auswuchtung wird der Testlauf am anderen Ende des Rotors wiederholt.
- 6. Auf Basis der durchgeführten Messungen errechnet das Auswuchtsystem die erforderlichen **Korrekturen** zum Ausgleich der Unwucht. Dies kann durch Anbringen oder Entfernen von Masse an bestimmten Winkelpositionen erfolgen.
- 7. In einem Kontrolllauf wird der Erfolg der Ausgleichsmaßnahmen überprüft.

Das Messverfahren setzt ein lineares Schwingungssystem voraus. Das heißt, eine Erhöhung des Betrags der Schwingung entspricht einer Erhöhung der Unwucht um denselben Betrag. Weiterhin wird Phasentreue vorausgesetzt, d.h. eine Verlagerung der Testmasse um einen bestimmten Winkel zieht auch eine Verlagerung im Schwingungssignal um denselben Winkel nach sich.

In der Praxis sind diese Voraussetzungen oft nicht gegeben, weil zum Beispiel Resonanzen oder Dämpfungen auftreten, die zu nichtlinearen Zusammenhängen zwischen Schwingungsgrößen und Unwucht führen. Daher ist es in der Regel erforderlich, sich in mehreren Durchgängen dem gewünschten Wuchtziel anzunähern.

4.7.2. Messung

Für die Messung kommen je nach Ebenenzahl ein oder zwei uniaxiale Beschleunigungsaufnehmer zum Einsatz. Empfohlen werden robuste, elektrisch isolierte Industrietypen, z.B. KS80D oder KS74C100. In den meisten Fällen sind Typen mit einer Empfindlichkeit von ca. 100 mV/g zu empfehlen. Bei niedrigen Drehzahlen und damit kleineren Fliehkräften sind die Beschleunigungen geringer, was den Einsatz empfindlicherer Sensoren erfordern kann. Die Sensoren werden radial zur Rotationsache montiert, idealerweise direkt auf die Wellenlager. Am VM100 werden die Sensoren an die Messkanäle 1X und 1Y angeschlossen. Im Bediendialog werden die Sensorpositionen als Ebene A und Ebene B bezeichnet.

48

Der Auswuchtalgorithmus benötigt einen Drehzahlimpuls. Dafür wird eine Reflex-Lichtschranke mit Magnetstativ VM100-LS (Bild 68) an den Eingang "RPM" des VM100 angeschlossen und eine Reflexmarke auf dem Rotor angebracht. Die Winkelposition der Reflexmarke kann frei gewählt werden. Bitte beachten Sie, dass die Reflexmarke bei höheren Drehzahlen eine gewisse Größe haben muss, um eine messbare Impulslänge zu erzeugen. Zur Reflex-Lichtschranke VM100-PS gehört ein flexi-

bles Magnetstativ. Bei der Justierung auf die Reflexmarke hilft ein roter Leucht-fleck.

Alle berechneten Winkel für die Masseveränderungen sind entgegen der Drehrichtung zu verstehen (Bild 69). Bezugswinkel oder Nullwinkel ist die Position der Testmasse beim Testlauf. Die Winkelposition der Reflexmarke ist in diesem Zusammenhang nicht relevant.

Im oberen Teil des Auswucht-Bildschirms befindet sich die einheitliche Menüleiste, die in Abschnitt 3.3 beschrieben wird.

Über die Taste 🔀 öffnen Sie das Einstellungsmenü (Bild 70).

Bild 69: Winkelkonventionen

Unter Auswuchtmodus (Balancing mode) wählen Sie zwischen Ein- und Zweiebenen-Auswuchtung.

Die **Drehzahltoleranz** (RPM tolerance) ist die zulässige Schwankungsbreite der gemessenen Drehzahl in Prozent. Bei Überschreitung kann der Auswuchtvorgang nicht fortgesetzt werden.

Die Verstärkung (Gain) kann für beide Ebenen zwischen automatischer Verstärkungseinstellung und den festen Verstärkungen von 1, 10 und 100 umgeschaltet werden. In der Regel ist beim Auswuchten eine feste Verstärkung empfehlenswert. Ist die Verstärkung zu hoch eingestellt, wird statt der Amplitudenwerte Übersteuerung ausgegeben.

Der Auswuchtradius (Balancing radius) ist der Radius auf dem Rotor, an dem die Test- und Korrekturmassen angebracht bzw. entfernt werden. Eine Angabe ist nicht zwingend erforderlich. Der Radius dient nur zur Berechnung der Restunwucht.

Balancing Settings		×
Balancing mode	Two planes (A/B)	
RPM tolerance	1 💌 %	
Gain	A:10 ▼ B:10 ▼	
Balancing radius (optional, for unbalance calculation) Vibration quantity	A: 50.0 B: 50.0	mm
Mass unit	g ∣▼ (test and correct	ion)
Unbalance unit	gmm 🔽	
Rotor weight (optional, for quality grade and test mass :	1.50	kg 🔽

Bild 70: Einstellungen zum Auswuchten (Beispiel für 2 Ebenen)

Die Schwinggröße (Vibration quantity) kann zwischen Schwingbeschleunigung in m/s^2 und Schwinggeschwindigkeit in mm/s gewählt werden. In den meisten Fällen ist die Schwinggeschwindigkeit die bevorzugte Messgröße.

Die **Masseeinheit** (Mass unit) ist die Maßeinheit der einzugebenden Testmassen sowie der ermittelten Korrekturmassen. Sie sollte der Rotorgröße und der angestrebten Wuchtgüte entsprechend sinnvoll gewählt werden.

Die Unwuchteinheit (Unbalance unit) ist die Maßeinheit der ausgegebenen Restunwucht.

Die **Rotormasse** (Rotor mass) kann optional angegeben werden, um Testmassen vorzuschlagen und Wuchtgüten zu berechnen.

Sind die Einstellungen gemacht, kann mit dem Auswuchten begonnen werden.

Je nachdem, ob Ein- oder Zweiebenen-Auswuchtung gewählt wurde, zeigt der Bildschirm ein oder zwei Polardiagramme für die Unwuchtvektoren.

Nachfolgend wird an einem Beispiel der Ablauf der Einebenen-Auswuchtung dargestellt.

Das Auswuchten beginnt im Urunwuchtlauf (Initial Run). Nachdem der Beschleunigungsaufnehmer und die Reflex-Lichtschranke montiert sind, starten Sie den Rotor. Das VM100 misst die Drehzahl und ihre Schwankungsbreite während der letzten zehn Sekunden. Liegt die Drehzahlschwankung unter der geforderten Toleranz, wird der Beschleunigungs- bzw. Geschwindigkeitsvektor in m/s² bzw. mm/s angezeigt (Bild 71). Amplitude und Phasenwinkel werden über die Messdauer gemittelt, so dass die Messwerte und der Zeiger immer ruhiger werden, je länger die Messung läuft. Mit der Reset-Taste können Sie die Mittelwerte löschen und die Mittelung neu starten. Ist eine gute Stabilität erreicht, wird die Messung mit versen gespeichert und der Rotor angehalten.

Bild 71: Urunwuchtlauf (1 Ebene)

→ Die Drehzahl muss während aller nachfolgenden Läufe konstant bleiben. In den weiteren Läufen wird daher die gemessene Drehzahl und deren Abweichung von der Drehzahl im Urunwuchtlauf angezeigt.

Nach Stillstand wechselt das Gerät zum **Testlauf** (Test Run). Im Polardiagramm wird die gemessene Urunwucht als Markierung "O" angezeigt (Bild 72). Sie werden zur Anbringung einer Testmasse aufgefordert. Wurde in den Einstellungen die Rotormasse angegeben, steht ein Vorschlag für die Testmasse auf Basis einer Wuchtgüte von 6,3 nach ISO 1940 zur Verfügung. Bei Berührung des Masse-Eingabefelds erscheint eine Zahlentatstatur zur Eingabe der Masse in der vorgegebenen Einheit. Die eingegebene Masse wird am Diagramm beim Winkel 0° angezeigt. Der Anbringungswinkel der Testmasse ist der Bezugswinkel (Nullwinkel) für alle nachfolgenden Auswuchtschritte.

Die richtige Wahl von Größe und Winkelposition der Testmasse erfordert etwas Übung. Nach Anbringung der Testmasse muss eine hinreichende Änderung des Schwingungsvektors vorliegen. Es ist nicht entscheidend, ob sich dabei die Unwucht erhöht oder verringert.

Nun beginnt der Testlauf (Bild 73). Ist der Schwingungsvektor stabil, wird die Messung mit
gespeichert. Danach wird der Rotor wieder angehalten.

Es kommt vor, dass die Änderung der Unwucht nach Anbringung der Testmasse zu gering ist. Sollte die Amplitudenänderung weniger als 20 % und gleichzeitig die Winkeländerung unter 10 % betragen, wird ein Warnhinweis angezeigt. Sie können selbst entscheiden, ob Sie fortfahren oder eine andere Testmasse anbringen möchten bzw. einen anderen Winkel dafür wählen möchten.

Bild 73: Testlauf (1 Ebene)

Nach Stillstand werden Sie gefragt, ob die Testmasse am Rotor verbleiben (keep) oder wieder entfernt (remove) werden soll (Bild 74). Ein Verbleib kann beispielsweise sinnvoll sein, wenn die Testmasse angeschweißt wurde. In diesem Fall wird sie in die nachfolgende Korrekturmassenberechnung einbezogen. Anderenfalls entfernen Sie die Testmasse und berühren \checkmark .

Bild 74: Testmasse behalten oder entfernen (1 Ebene)

Danach zeigt das Gerät die erforderlichen **Korrekturen** an (Bild 75). Sie haben die Möglichkeit, nur an vorgegebenen Winkelpositionen (Use fixed angles) Massen hinzuzufügen (Add mass) oder zu entfernen (Remove mass). Häufig werden diese Winkelschritte auch **Festorte** genannt. Das kann zum Beispiel an Lüfterrädern mit einer bestimmten Anzahl Flügel nützlich sein. Setzen Sie das Häkchen und geben Sie die gewünschte Winkelanzahl ein. Bei Wahl von Festorten werden zwei Massen für benachbarte Positionen ausgegeben, da die berechnete Korrektur praktisch nie mit einem Festort zusammenfällt.

Die Ergebnisse für **Hinzufügen** und **Entfernen** unterscheiden sich nur in einem Winkelversatz von 180° und dem Vorzeichen der Masse.

Die Winkelangaben beziehen sich auf den Anbringungswinkel der Testmasse und werden entgegen der Drehrichtung gemessen. Bei vorgegebenen Winkelpositionen werden die Winkel durchnummeriert. Der Winkel "#0" ist dabei der Winkel, an dem die Testmasse angebracht wurde.

Bild 75: Korrekturen (1 Ebene)

Sind die Korrekturen am Rotor erfolgt, bestätigen Sie mit van den Rotor zum **Kontrolllauf** (Bild 76). Sie sehen den resultierenden Unwuchtvektor. Unter Amplitude und Winkel wird der Unterschied zum Urzustand in Prozent angezeigt. Er liefert die Aussage über den Auswuchterfolg. Falls im Einstellmenü der Rotorradius eingegeben wurde, sehen Sie die Restunwucht in Gramm-Millimeter. Im gezeigten Beispiel entspricht die Restunwucht einer Masse von 1 g an einem Radius von 32,1 mm. Speichern Sie das Ergebnis mit van der Rotor zum Stillstand.

Sie werden nun gefragt, ob Sie die Auswuchtung fortsetzen möchten (Bild 77). Wenn Sie mit dem Ergebnis zufrieden sind, können Sie die Auswuchtung mit beenden oder vorher noch einen Bericht speichern. Wenn Sie die Auswuchtung fortsetzen, werden erneut Korrekturmassen berechnet und ein weiterer Testlauf erfolgt.

Bild 76: Kontrolllauf (1 Ebene)

Bild 77: Beenden oder Fortsetzen

Sollten Sie einmal nicht zum gewünschten Auswuchtziel gelangen, können folgende Maßnahmen hilfreich sein:

- Ändern Sie die Drehzahl, um möglichen Resonanzen auszuweichen.
- Experimentieren Sie mit verschiedenen Massen und Winkelpositionen (Nullwinkel) im Testlauf
- Machen Sie Versuche mit verschiedenen Sensorpositionen (horizontal, vertikal).

Die **Zweiebenen-Auswuchtung** erfolgt in ähnlicher Weise. Hinzu kommt die Anbringung einer zweiten Testmasse sowie ein zweiter Testlauf in Ebene B. Nachfolgend finden Sie einer Kurzbeschreibung des Ablaufs anhand eines Beispiels.

Zunächst wird die Unwucht für beide Ebenen im Ist-Zustand gemessen (Bild 78).

Bild 78: Urunwuchtlauf (2 Ebenen)

Danach erfolgt die Anbringung einer Testmasse in Ebene A und ein erneuter Start der Rotation (Bild 79).

Bild 79: Testmasse anbringen an Ebene A (2 Ebenen)

Die Ergebnisse des Testlaufs an Ebene A werden gespeichert (Bild 80) und die Rotation gestoppt.

Bild 80: Testlauf Ebene A (2 Ebenen)

Nun entscheiden Sie, ob Sie die Testmasse am Rotor belassen oder wieder entfernen möchten (Bild 81). Die Auswahl gilt später auch für Ebene B.

Bild 81: Testmasse von Ebene A behalten oder entfernen (2 Ebenen)

Danach bringen Sie eine Testmasse in Ebene B an und starten die Rotation (Bild 82).

Bild 82: Testmasse anbringen an Ebene B (2 Ebenen)

Nach dem Start der Rotation erfolgt der Testlauf B. Nach der Speicherung und dem Stoppen der Rotation bestätigen Sie, dass Sie die Testmasse in Ebene B entfernt bzw. belassen haben (Bild 83).

Bild 83: Testmasse von Ebene B behalten / entfernen (2 Ebenen)

Nun werden die berechneten Korrekturmassen und ihre Winkel für beide Ebenen angezeigt (Bild 84). Im Beispiel wurden 16 Winkelschritte (Festorte) gewählt.

Führen Sie die Korrekturen durch und bestätigen Sie dies. Starten Sie die Rotation zum ersten Kontrolllauf (Bild 85).

Bild 85: Erster Kontrolllauf (2 Ebenen)

Unter dem Diagramm werden Unwuchten (U) in der gewählten Maßeinheit sowie die Wuchtgüte (G) nach ISO 1940 für beide Ebenen angezeigt. Diese Angaben erfolgen nur, wenn im Einstellmenü der Rotordurchmesser und die Rotormasse eingetragen wurden.

Nach dem Speichern des Ergebnisses und Anhalten der Rotation werden Sie gefragt, ob Sie die Auswuchtung hier beenden oder fortsetzen wollen (Bild 86).

Bild 86: Auswuchtung nach erstem Kontrolllauf fortsetzen (2 Ebenen)

Im Beispiel wird die Auswuchtung fortgesetzt. Es werden weitere Korrekturen für beide Ebenen angezeigt (Bild 87).

Im zweiten Kontrolllauf hat sich noch eine Verbesserung ergeben. In den Polardiagrammen werden neben der Urunwucht die nummerierten Vektoren der Kontrollläufe angezeigt (Bild 88).

Bild 88: Zweiter Kontrolllauf (2 Ebenen)

Mit 0 lassen sich die in die angebrachten Korrekturmassen je Ebene in eine bzw. bei Festorten in zwei Massen zusammenfassen (Bild 90). Dazu sind alle angebrachten Korrekturmassen zu demontieren und die berechneten Massen anzubringen. Eventuell am Rotor belassene Testmassen werden davon nicht berührt.

Bild 89: Auswuchtung fortsetzen nach zweitem Kontrolllauf?

Bild 90: Zusammenfassen von Korrekturmassen

Durch Berühren von i öffnet sich ein Textfenster mit der Zusammenfassung aller erfolgten Masseänderungen und der resultierenden Schwingungs- bzw. Unwuchtvektoren (Bild 91). Sie können damit alle vorher angebrachten Korrekturmassen entfernen und durch die berechnete(n) ersetzen.

Zur Speicherung des Protokolls berühren Sie und wählen **CSV-Auswuchtbe**richt speichern (Save CSV balancing report). Ein Beispiel für eine gespeicherte CSV-Datei sehen Sie in Bild 92. Alternativ kann der Anzeigeinhalt als BMP-Bildschirmfoto gespeichert werden. Die Dateien finden Sie auf der SD-Karte im Ordner "BAL".

BALANCING REPORT

Instr.: Sensor A:	VM100A	Ser.: Ser.:	123456	Sensit.:	10	mV/ms^-2
Date & Time: Temp:	10/02/22 22	13:55:52 °C				
Comment: NFC Id:						
Balancing mode: Rotary speed: Rotor weight: Balancing radius:	One plane 2941 3 50	rpm kg mm	<1	%		
Initial Run:	2,68	mm/s RMS	108	٥		
Test weight: Test Run: After test run:	2,5 1,57 keep	g mm/s RMS	0 95	0 0		
Correction 1-1: Correction 1-2: Check Run 1: Resid. unbalance 1: Bal. quality (G) 1:	1,05 2,28 1,19 124 13	g g mm/s RMS gmm mm/s	315 338 174	0 0		
<end></end>						

Bild 92: CSV-Auswuchtprotokoll

Sollten Sie einmal nicht zum gewünschten Auswuchtziel gelangen, beachten Sie bitte die Hinweise auf Seite Fehler: Verweis nicht gefunden.

4.8. Modul Terzbandanalyse (VC- und Nano-Kriterien)

4.8.1. Grundlagen

Dieses Modul dient für Schwingungsmessungen an sehr empfindlichen Ausrüstungen, z.B. Elektronenmikroskopen, Fotolithografieanlagen, Anlagen der Mikroelektronik und der Nanotechnologie. Zur Vereinheitlichung der Aufstellungs- und Betriebsbedingungen dieser Anlagen wurden in den achtziger Jahren die VC-Grenzwerte (Vibration Criteria) entwickelt. Es existieren die Stufen VC-A bis VC-G nach Tabelle 1.

Schwingungs- kriterium	Schwingpegel im Terzspektrum	Anwendung	Struktur- größe
Wahrneh- mungsgrenze	100 μm (4 – 80 Hz)	menschliche Fühlschwelle, für Schlafbereiche, Opernhäuser, Thea- ter, Mikroskope bis 100-fach	30 µm
VC-A	50 µm (4 – 80 Hz)	optische Mikroskope bis 400-fach	8 µm
VC-B	25 μm (1 – 80 Hz)	Inspektionsgeräte, anspruchsvolle Labore, Lithografiegeräte inkl. Step- per	3 µm
VC-C	12,5 μm (1 – 80 Hz)	Mikroskope bis 1000-fach, meiste Lithografie- und Inspektionsgeräte	1 µm
VC-D	6,25 μm (1 – 80 Hz)	sehr hochwertige Elektronenmikro- skope (TEM/SEM), Elektronen- strahlsysteme	0,3 µm
VC-E	3,1 μm (1 – 80 Hz)	Geräte höchster Präzision, schwer einzuhalten, vorzugsweise auf nicht unterkellerten Bodenplatten	0,1 µm
VC-F	1,6 µm (1 – 80 Hz)	extrem ruhige Forschungsräume, sehr schwer erreichbar, nur zur Cha- rakterisierung, kein Auslegungskri- terium	
VC-G	0,8 μm (1 – 80 Hz)	extrem ruhige Forschungsräume, sehr schwer erreichbar, nur zur Cha- rakterisierung, kein Auslegungskri- terium	

Tabelle 1: VC-Kriterien nach VDI 2038-2

Speziell für die Anforderungen der Nano-Technik wurden die sogenannten Nano-Kriterien mit noch schärferen Grenzwerten festgelegt (Tabelle 2).

Schwingungs- kriterium	Schwingpegel im Terzspektrum	Anwendung	Struktur- größe
Nano-D	1,6 μm/s von 1 bis 5 Hz, 6,4 μm/s von 20 bis 100 Hz	Sehr schwer einzuhalten, für REM der Nanotechnik, Obergeschosse mit hohen Anforderungen an Steifigkeit und Eigenfrequenz	1 nm
Nano-E	0,8 μm/s von 1 bis 5 Hz, 3,2 μm/s von 20 bis 100 Hz	Extremes Kriterium für REM der Nanotechnik, nur auf sehr massiven Bodenplatten und nur bei sehr güns- tigen Baugrundvoraussetzungen ein- haltbar	0,2 - 0,5 nm
Nano-EF	0,53 μm/s von 1 bis 5 Hz, 2,1 μm/s von 20 bis 100 Hz	strengstes Kriterium für REM und TEM der Nanotechnik für Auflösun- gen im Sub-Ångströmbereich, nur unter sehr speziellen Bedingungen und besonderen Baukonstruktionen einhaltbar	<0,1 nm

Tabelle 2: Nano-Kriterien nach VDI 2038-2

Die VC- und Nano-Bewertungen erfolgen im Terz-Spektrum der Schwinggeschwindigkeit zwischen 1 und 100 Hz. Bild 93 zeigt die Grenzwertlinien im Frequenzbereich.

d 93: Grenzwertlinien der VC- und Nano-Kriterien

4.8.2. Sensoren für VC- und Nano-Kriterien

Diese Messung stellt höchste Anforderungen an die Auflösung der Schwingungsaufnehmer. Nur piezoelektrische Beschleunigungsaufnehmer mit hoher Empfindlichkeit kommen in Betracht.

Bild 96: Einachsiger Aufnehmer KB12VD

Der Triaxial- Beschleunigungsaufnehmer KS823B (Bild 94) und der einachsige KS48C (Bild 95) eignen sich für Messungen bis VC-D. Der extrem hochauflösende einachsige KB12VD (Bild 96) kann bis VC-G bzw. Nano-EF eingesetzt werden. Für die Montage einachsiger Sensoren in drei Raumrichtungen bietet Metra Triaxial-Montagewürfel als Zubehör an (Bild 98).

Ein weiteres zweckmäßiges Zubehör für die Sensoraufstellung auf Böden ist die Dreifuß-Bodenplatte Typ 729 (Bild 97).

Bild 97: Dreifuß-Bodenplatte Typ 729

Sensoren für das Modul Terzbandanalyse müssen an Eingang 1 angeschlossen werden.

4.8.3. Messung

Das VM100 misst dreikanalig das Terz-Spektrum der Schwinggeschwindigkeit. Damit kann in drei Raumrichtungen (X/Y/Z) oder an drei verschiedenen Positionen gleichzeitig gemessen werden. Bild 99 zeigt beispielhaft die Messwertanzeige.

Bild 99: Terzbandanalyse am Beispiel für Nano-D

Im oberen Teil befindet sich die einheitliche Menüleiste, die in Abschnitt 3.3 beschrieben wird.

Es werden für jeden Messkanal 23 Terzbänder von 1 bis 160 Hz angezeigt. Die violette Grenzwertlinie entspricht den Werten aus Tabelle 1 bzw. 2. Der gelbe Messcursor kann an seinem unteren Ende über das Spektrum bewegt werden und zeigt am oberen Ende die drei Amplituden und die Frequenz an.

Mit den Tasten +/- können Sie die Skalierung der Amplitudenachse ändern.

Oben rechts sehen Sie einen Alarmindikator in Form eines Smileys. Dieser erscheint grün, wenn die höchste Amplitude im zu überwachenden Frequenzbereich unter 80 % des Grenzwerts liegt. Zwischen 80 und 100 % ist der Indikator gelb, darüber rot. Amplituden außerhalb des Bereichs der Grenzwertlinie werden nicht berücksichtigt.

→ Trennen Sie bei hochempfindlichen Messungen immer das VM100 vom USB-Anschluss, um Störungen zu minimieren.

→ Vermeiden Sie bei sehr empfindlichen Messungen Zugluft oder Temperaturschwankungen an Sensor und Messgerät. Wir empfehlen dazu Schutzhüllen aus Isoliermaterial, wie z.B. Schaumstoff.

Über die Schaltfläche 🔀 öffnen Sie das Einstellungsmenü (Bild 100).

Custom limit values										
2 Hz 🔽	1.00	µm/s								
10 Hz 🔽	2.00	µm/s								
50 Hz 🔽	4.00	µm/s								
125 Hz 💌										
•	✓									

ld 100: Menü für Einstellungen

Bild 101: Individuelle Grenzwerte

Im Menü **Grenzlinie** (Limit line) wählen Sie das gewünschte Schwingungskriterium. Es besteht die Möglichkeit, neben den VC- und Nano-Kriterien auch eigene Grenzwerte festzulegen. Dazu wählen Sie "Individuell" bzw. "Custom", worauf sich das Menü zur Eingabe der Grenzwerte öffnet (Bild 101). Hier können drei Bereiche definiert werden. Die erste Frequenz ist die tiefste Frequenz, ab der überwacht wird. Spektrallinien darunter werden nicht ausgewertet. Daneben steht die Amplitude, die bis zur zweiten Frequenz gilt usw. Die vierte Frequenz markiert das obere Ende des Überwachungsbereichs. Spektrallinien darüber werden nicht ausgewertet. Die Frequenzen müssen in geordneter Reihenfolge gewählt werden. Die Amplituden können im Bereich von 0,1 bis 1000 μ m/s liegen. Bild 102 zeigt die aus dem Beispiel resultierende Grenzwertlinie.

Bild 102: Individuelle Grenzwertlinie aus Bild 101

Die Verstärkung (Gain) wird in der Regel auf Auto oder 100 eingestellt.

Mit der Option **Max. halten** (Hold max.) bleiben die jeweils größten Spektrallinien im Diagramm stehen. Sie werden in der jeweiligen Kanalfarbe abgedunkelt ausgegeben (Bild 103). Mit der Reset-Taste wird der Diagramminhalt gelöscht.

Bild 103: Terzspektrum mit gehaltenen Maximalamplituden

Der Speichermodus (Save mode) erlaubt zwei Einstellungen:

- Grenzlinie (Limit line): Bei jeder Überschreitung der Grenzlinie wird eine Messung gespeichert. Um die Speicherung zu starten öffnen Sie durch Berühren von ad das Speichermenü und wählen CSV-Speicherung. Sie können hier den Dateinamen eingeben oder die Vorgabe aus Datum und Uhrzeit verwenden (Beispiel: "OCTAVE_220607_100645.csv"). Der Speicherknopf erscheint danach in gelb mit dem Text "LOG". Bei jedem Überschreiten der Grenzlinie wird nun eine Zeile an die Datei angehängt. Dies geschieht so lange, bis erneut der Speicherknopf gedrückt wird.
- Jede Sekunde (Every second): In diesem Modus wird auch ohne Überschreitung der Grenzlinie pro Sekunde eine Messung gespeichert. Durch erneutes Berühren von in wird die Aufzeichnung beendet. Nach 24 Stunden wird die CSV-Datei geschlossen und automatisch eine neue erstellt. Diese erhält den gleichen Dateinamen mit der Ergänzung "..._a.csv", die nächste "..._b.csv", bis die Aufzeichnung nach 27 Tagen bei "..._z.csv" beendet wird.

Die gespeicherten Messungen finden Sie auf der SD-Karte im Ordner "OCTAVE".

Bild 104 zeigt ein Beispiel. Die Kopfdaten enthalten Angaben zu Messgerät und Sensor, Verstärkung, Datum und Uhrzeit sowie das gewählte Schwingungskriterium.

Die Messwerte werden tabellarisch ausgegeben. Im Tabellenkopf stehen für jede Spalte die Frequenz, der Messkanal und der Grenzwert.

Ab Zeile 20 folgen die Messwerte. An jedem Speicherzeitpunkt werden pro Terzband die drei Schwinggeschwindigkeiten in µm/s ausgegeben.

THIRD OCT	AVE ANALY	SIS (VC/NANC	CRITERIA)										
Instr.:	VM100B	Serial no.:	123456										
Comment													
NFC Id:													
Sensor 1X		Serial no :		Sensit	10000 0000	mV/ms^-2							_
Sensor 1Y:		Serial no.:		Sensit:	10000.0000	mV/ms^-2							
Sensor 1Z:		Serial no.:		Sensit:	10000.0000	mV/ms^-2							_
Gains:	Auto	Auto	Auto										
Date:	24/06/22												
Criterion:	VC-B												
Hz	1	1	1	1.25	1.25	1.25	1.6	1.6	1.6	2	2	2	2.5
µm/s	x	Y	Z	х	Y	Z	X	Y	Z	X	Y	Z	х
Limits													
09:32:47	3.00	1.56	1.49	1.93	1.05	1.25	0.42	0.40	0.46	0.46	0.10	0.21	0.13
09:32:47 09:32:48	3.00 1.53	1.56	1.49	1.93	1.05	1.25	0.42	0.40	0.46	0.46	0.10	0.21	0.13
09:32:47 09:32:48 09:32:49	3.00 1.53 2.56	1.56 3.14 2.92	1.49 2.79 2.48	1.93 1.02 2.95	1.05 1.17 1.29	1.25 1.09 1.23	0.42 0.74 1.32	0.40 0.47 1.26	0.46 0.38 1.27	0.46 0.55 0.34	0.10 0.24 0.17	0.21 0.24 0.20	0.13 0.37 1.23
09:32:47 09:32:48 09:32:49 09:32:50	3.00 1.53 2.56 2.44	1.56 3.14 2.92 2.65	1.49 2.79 2.48 2.35	1.93 1.02 2.95 4.41	1.05 1.17 1.29 3.25	1.25 1.09 1.23 3.35	0.42 0.74 1.32 1.67	0.40 0.47 1.26 1.86	0.46 0.38 1.27 2.02	0.46 0.55 0.34 0.40	0.10 0.24 0.17 0.50	0.21 0.24 0.20 0.37	0.13 0.37 1.23 1.01
09:32:47 09:32:48 09:32:49 09:32:50 09:32:57	3.00 1.53 2.56 2.44 1.59	1.56 3.14 2.92 2.65 1.82	1.49 2.79 2.48 2.35 1.82	1.93 1.02 2.95 4.41 0.83	1.05 1.17 1.29 3.25 0.64	1.25 1.09 1.23 3.35 0.83	0.42 0.74 1.32 1.67 0.95	0.40 0.47 1.26 1.86 0.83	0.46 0.38 1.27 2.02 0.82	0.46 0.55 0.34 0.40 0.76	0.10 0.24 0.17 0.50 0.84	0.21 0.24 0.20 0.37 0.77	0.13 0.37 1.23 1.01 1.69
09:32:47 09:32:48 09:32:49 09:32:50 09:32:57 09:32:58	3.00 1.53 2.56 2.44 1.59 2.53	1.56 3.14 2.92 2.65 1.82 2.87	1.49 2.79 2.48 2.35 1.82 2.71	1.93 1.02 2.95 4.41 0.83 2.21	1.05 1.17 1.29 3.25 0.64 2.04	1.25 1.09 1.23 3.35 0.83 2.22	0.42 0.74 1.32 1.67 0.95 2.50	0.40 0.47 1.26 1.86 0.83 2.29	0.46 0.38 1.27 2.02 0.82 2.34	0.46 0.55 0.34 0.40 0.76 1.64	0.10 0.24 0.17 0.50 0.84 1.62	0.21 0.24 0.20 0.37 0.77 1.60	0.13 0.37 1.23 1.01 1.69 1.53
09:32:47 09:32:48 09:32:49 09:32:50 09:32:57 09:32:58 09:33:04	3.00 1.53 2.56 2.44 1.59 2.53 16.25	1.56 3.14 2.92 2.65 1.82 2.87 16.52	1.49 2.79 2.48 2.35 1.82 2.71 15.89	1.93 1.02 2.95 4.41 0.83 2.21 37.86	1.05 1.17 1.29 3.25 0.64 2.04 37.93	1.25 1.09 1.23 3.35 0.83 2.22 37.84	0.42 0.74 1.32 1.67 0.95 2.50 42.06	0.40 0.47 1.26 1.86 0.83 2.29 40.31	0.46 0.38 1.27 2.02 0.82 2.34 41.47	0.46 0.55 0.34 0.40 0.76 1.64 37.02	0.10 0.24 0.17 0.50 0.84 1.62 34.40	0.21 0.24 0.20 0.37 0.77 1.60 37.10	0.13 0.37 1.23 1.01 1.69 1.53 86.60
09:32:47 09:32:48 09:32:49 09:32:50 09:32:57 09:32:58 09:33:04 09:33:05	3.00 1.53 2.56 2.44 1.59 2.53 16.25 70.48	1.56 3.14 2.92 2.65 1.82 2.87 16.52 72.10	1.49 2.79 2.48 2.35 1.82 2.71 15.89 70.86	1.93 1.02 2.95 4.41 0.83 2.21 37.86 92.61	1.05 1.17 1.29 3.25 0.64 2.04 37.93 94.31	1.25 1.09 1.23 3.35 0.83 2.22 37.84 91.93	0.42 0.74 1.32 1.67 0.95 2.50 42.06 90.87	0.40 0.47 1.26 1.86 0.83 2.29 40.31 86.91	0.46 0.38 1.27 2.02 0.82 2.34 41.47 89.71	0.46 0.55 0.34 0.40 0.76 1.64 37.02 108.90	0.10 0.24 0.17 0.50 0.84 1.62 34.40 100.63	0.21 0.24 0.20 0.37 0.77 1.60 37.10 109.10	0.13 0.37 1.23 1.01 1.69 1.53 86.60 179.1
09:32:47 09:32:48 09:32:49 09:32:50 09:32:57 09:32:58 09:33:04 09:33:05 09:33:06	3.00 1.53 2.56 2.44 1.59 2.53 16.25 70.48 152.37	1.56 3.14 2.92 2.65 1.82 2.87 16.52 72.10 156.26	1.49 2.79 2.48 2.35 1.82 2.71 15.89 70.86 152.00	1.93 1.02 2.95 4.41 0.83 2.21 37.86 92.61 167.36	1.05 1.17 1.29 3.25 0.64 2.04 37.93 94.31 172.61	1.25 1.09 1.23 3.35 0.83 2.22 37.84 91.93 165.91	0.42 0.74 1.32 1.67 0.95 2.50 42.06 90.87 89.93	0.40 0.47 1.26 1.86 0.83 2.29 40.31 86.91 85.23	0.46 0.38 1.27 2.02 0.82 2.34 41.47 89.71 88.66	0.46 0.55 0.34 0.40 0.76 1.64 37.02 108.90 110.48	0.10 0.24 0.17 0.50 0.84 1.62 34.40 100.63 100.98	0.21 0.24 0.20 0.37 0.77 1.60 37.10 109.10 109.51	0.13 0.37 1.23 1.01 1.69 1.53 86.60 179.1 96.1
09:32:47 09:32:48 09:32:50 09:32:57 09:32:57 09:32:58 09:33:04 09:33:05 09:33:06 09:33:07	3.00 1.53 2.56 2.44 1.59 2.53 16.25 70.48 152.37 215.72	1.56 3.14 2.92 2.65 1.82 2.87 16.52 72.10 156.26 223.28	1.49 2.79 2.48 2.35 1.82 2.71 15.89 70.86 152.00 215.05	1.93 1.02 2.95 4.41 0.83 2.21 37.86 92.61 167.36 163.92	1.05 1.17 1.29 3.25 0.64 2.04 37.93 94.31 172.61 172.90	1.25 1.09 1.23 3.35 0.83 2.22 37.84 91.93 165.91 162.58	0.42 0.74 1.32 1.67 0.95 2.50 42.06 90.87 89.93 43.23	0.40 0.47 1.26 1.86 0.83 2.29 40.31 86.91 85.23 41.16	0.46 0.38 1.27 2.02 0.82 2.34 41.47 89.71 88.66 42.51	0.46 0.55 0.34 0.40 0.76 1.64 37.02 108.90 110.48 39.43	0.10 0.24 0.17 0.50 0.84 1.62 34.40 100.63 100.98 36.50	0.21 0.24 0.20 0.37 0.77 1.60 37.10 109.10 109.51 38.52	0.13 0.37 1.23 1.01 1.69 1.53 86.60 179.1 96.1 37.6
09:32:47 09:32:48 09:32:49 09:32:50 09:32:57 09:32:58 09:33:04 09:33:05 09:33:06 09:33:07 09:33:08	3.00 1.53 2.56 2.44 1.59 2.53 16.25 70.48 152.37 215.72 229.29	1.56 3.14 2.92 2.65 1.82 2.87 16.52 72.10 156.26 223.28 239.64	1.49 2.79 2.48 2.35 1.82 2.71 15.89 70.86 152.00 215.05 228.75	1.93 1.02 2.95 4.41 0.83 2.21 37.86 92.61 167.36 163.92 127.65	1.05 1.17 1.29 3.25 0.64 2.04 37.93 94.31 172.61 172.90 136.72	1.25 1.09 1.23 3.35 0.83 2.22 37.84 91.93 165.91 162.58 126.83	0.42 0.74 1.32 1.67 0.95 2.50 42.06 90.87 89.93 43.23 21.43	0.40 0.47 1.26 1.86 0.83 2.29 40.31 86.91 85.23 41.16 24.13	0.46 0.38 1.27 2.02 0.82 2.34 41.47 89.71 88.66 42.51 21.06	0.46 0.55 0.34 0.40 0.76 1.64 37.02 108.90 110.48 39.43 28.50	0.10 0.24 0.17 0.50 0.84 1.62 34.40 100.63 100.98 36.50 26.11	0.21 0.24 0.20 0.37 0.77 1.60 37.10 109.10 109.51 38.52 28.55	0.13 0.37 1.23 1.01 1.69 1.53 86.60 179.1 96.1 37.68 22.10
09:32:47 09:32:48 09:32:49 09:32:50 09:32:57 09:32:57 09:33:04 09:33:05 09:33:06 09:33:07 09:33:08 09:33:09	3.00 1.53 2.56 2.44 1.59 2.53 16.25 70.48 152.37 215.72 229.29 187.68	1.56 3.14 2.92 2.65 1.82 2.87 16.52 72.10 156.26 223.28 239.64 198.28	1.49 2.79 2.48 2.35 1.82 2.71 15.89 70.86 152.00 215.05 228.75 187.48	1.93 1.02 2.95 4.41 0.83 2.21 37.86 92.61 1.67.36 1.63.92 1.27.65 55.86	1.05 1.17 1.29 3.25 0.64 2.04 37.93 94.31 172.61 172.90 136.72 61.47	1.25 1.09 1.23 3.35 0.83 2.22 37.84 91.93 165.91 162.58 126.83 56.05	0.42 0.74 1.32 1.67 0.95 2.50 42.06 90.87 89.93 43.23 21.43 31.54	0.40 0.47 1.26 1.86 0.83 2.29 40.31 86.91 85.23 41.16 24.13 31.09	0.46 0.38 1.27 2.02 0.82 2.34 41.47 89.71 88.66 42.51 21.06 31.26	0.46 0.55 0.34 0.40 0.76 1.64 37.02 108.90 110.48 39.43 28.50 18.27	0.10 0.24 0.17 0.50 0.84 1.62 34.40 100.63 100.98 36.50 26.11 16.32	0.21 0.24 0.20 0.37 0.77 1.60 37.10 109.10 109.51 38.52 28.55 18.01	0.13 0.37 1.23 1.01 1.69 1.53 86.60 179.1 96.1 37.60 22.10 17.80

Bild 104: CSV-Datei mit Messwerten (Ausschnitt)

Näheres zur Messwertspeicherung finden Sie in Abschnitt 5
4.9. Modul Hand-Arm-Schwingung

4.9.1. Grundlagen

Dieses Modul unterstützt die Messung von Hand-Arm-Vibrationen nach ISO 5349 und VDI 2057 an einem oder zwei Handgriffen. Es handelt sich dabei um Vibrationen, die über die Hand in den Körper eingeleitet werden. Diese können z.B. Durchblutungsstörungen, Knochen- oder Gelenkschäden und Muskelerkrankungen hervorrufen. Relevant für die Bewertung der so gemessenen Vibrationen ist die EU-Richtlinie 2002/44/EG. Den vollständigen Text erhalten Sie unter <u>https://eur-lex.europa.eu/</u>. Die Richtlinie beinhaltet Mindestanforderungen zum Schutz der Gesundheit von Arbeitnehmern vor Gefährdung durch Vibrationen. Die Hersteller von Maschinen und Geräten sowie Arbeitgeber, die diese einsetzen, sind aufgefordert, eine Risikoanalyse hinsichtlich der Schwingungsbelastung des Bedieners durchzuführen. Die Risikoanalyse kann auf Basis von Herstellerangaben zum Ausmaß der Vibration unter Beobachtung spezifischer Arbeitsweisen oder durch Messung erfolgen. Die Richtlinie legt folgende Grenzwerte fest:

	Hand-Arm, RMS
Auslösewert	2,5 m/s ²
Expositionsgrenzwert	5 m/s ²

Wird der Auslösewert überschritten, sind technische und organisatorische Maßnahmen zur Verringerung der Schwingungsbelastung einzuleiten.

Der **Expositionsgrenzwert** darf keinesfalls überschritten werden. Sollte dies geschehen sein, sind unverzüglich Maßnahmen zur Senkung der Schwingungsbelastung zu treffen.

Die Schwingungsbelastung kann auf Basis von Stichprobenmessungen ermittelt werden.

Die oben genannten Grenzwerte entsprechen dem normierten **Tagesexpositionswert** A(8), der sich auf einen Arbeitstag von 8 Stunden bezieht. Diese Rechengröße dient zum einfachen Vergleich von Schwingungseinwirkungen. Zur Ermittlung von A(8) ist keine achtstündige Messung erforderlich. Man führt lediglich Kurzzeitmessungen während repräsentativer Arbeitsabschnitte durch und normiert die Ergebnisse auf acht Stunden. Der Tagesexpositionswert errechnet sich nach Gleichung 1.

$$A(8) = a_w \sqrt{\frac{T_e}{T_0}}$$

Dabei sind:

- A(8) der Tagesexpositionswert
- aw der energieäquivalente Mittelwert (Schwingungsgesamtwert) der frequenzbewerteten Beschleunigung während der Einwirkungsdauer, das heißt, die Vektorsumme der mit dem Filter Wh frequenzbewerteten Effektivwerte in den Richtungen X/Y/Z.

$$a_{w} = \sqrt{a_{wx}^{2} + a_{wy}^{2} + a_{wz}^{2}}$$
 Gleichung 2

- Te die Dauer der Schwingungsbelastung pro Arbeitstag
- T₀ die Bezugsdauer von 8 Stunden

Der Tagesexpositionswert kann sich aus mehreren Belastungsabschnitten mit unterschiedlichen Schwingamplituden zusammensetzen. Dies trifft zu, wenn z.B. längere Unterbrechungen vorliegen, Arbeitsmittel oder deren Einsatzbedingungen wechseln. Ein Belastungsabschnitt zeichnet sich durch annähernd gleichbleibende Schwingungsbelastung mit einem Anteil von Unterbrechungen unter 10 % aus. Ein aus mehreren Belastungsabschnitten resultierende Tagesexpositionswert berechnet sich nach Gleichung 3.

$$A(8) = \sqrt{\frac{1}{T_0} \sum_{i=1}^n a_{wi}^2 T_{ei}}$$

Gleichung 3

Gleichung 1

Dabei sind:

- A(8) der Tagesexpositionswert
- a_{wi} die energieäquivalenten Mittelwerte bzw. Vektorsummen (a_w) der der mit dem Filter Wh frequenzbewerteten Beschleunigungen während der i-ten Tätigkeit
- n die Anzahl von Tätigkeiten
- T_{ei} die Dauer der i-ten Tätigkeit
- T₀ die Bezugsdauer von 8 Stunden

Die Schwingbeschleunigung jeder drei Messachsen (X/Y/Z) wird mit der Frequenzbewertung Wh nach ISO 8041-1 ermittelt. Betrachtet wird der Bereich von 6,3 bis 1250 Hz. Aus Bild 105 ist ersichtlich, dass tiefe Frequenzen stärker in die Bewertung einfließen als hohe.

Bild 105: Frequenzbewertung Wh

4.9.2. Hand-Arm-Sensor

Metra empfiehlt für Hand-Arm-Messungen den Triaxial-Beschleunigungsaufnehmer KS963B10.

Wählen Sie einen Messpunkt aus, der sich möglichst dicht an den Greifpunkten der Hand befindet, ohne jedoch den normalen Arbeitsvorgang zu behindern. Die Messung soll unter Anwendung von Kräften erfolgen, die typischen Betriebsbedingungen entsprechen. Da die Griffe von Arbeitsgeräten meist keine ebenen Flächen zum Ankleben oder Anschrauben des Sensors aufweisen, bietet Metra Ankoppelzubehör für gewölbte Flächen an.

Bild 106: KS963B10

Bild 108: Spannbandadapter 141B

Bild 107: Handgehaltener Adapter 143B

Der Adapter Typ 141B wird mit einem Kabelbinder befestigt. Der Adapter Typ 143B wird mit der Hand an den Griff gedrückt.

Wichtig ist eine feste Ankopplung des Sensors. Er darf keine Eigenbewegung aufweisen, da dies die Schwingungsmessung verfälschen könnte.

Bild 109 zeigt die Koordinatenausrichtung, die bei der Montage des Sensors zu beachten ist. Bei zylindrischen Griffen liegt die Y-Achse parallel zur Achse des

Griffes. Die Z-Achse liegt etwa in der Verlängerung des dritten Mittelhandknochens.

Bild 109: Koordinatensystem der Hand (aus ISO 5349-1)

4.9.3. Prüfung am Einsatzort

Die Norm ISO 8041-1 beschreibt in Abschnitt 15 die Überprüfung von Messgeräts und Sensor am Einsatzort vor der Messung. Dafür ist der Schwingungskalibrator VC21 von Metra geeignet. Dieser stellt das genormte Referenzsignal für Hand-Arm-Messungen von 10 m/s² mit 80 Hz mit bereit. Der Sensor KS963B10 besitzt Gewinde zur Montage in den Achsenrichtungen X, Y und Z.

4.9.4. Messung

Bild 111 zeigt die Messwertausgabe im Modul Hand-Arm-Schwingung. Im oberen Teil befindet sich die einheitliche Menüleiste, die in Abschnitt 3.3 beschrieben wird. Links werden die Schwingwerte für

Bild 110: Schwingungskalibrator VC21

beide Hände angezeigt. Es handelt sich dabei um Intervall-Effektivwerte, die über die gesamte Messdauer gemittelt werden. Das heißt, dass diese Werte immer stabiler werden, ja länger die Messdauer wird.

Darunter wird der energieäquivalente Mittelwert (Schwingungsgesamtwert) a_{w1} bzw. a_{w2} angezeigt. Dieser wird zur Berechnung des Tagesexpositionswerts A(8) (vgl. Abschnitt 4.9.1) herangezogen. Das VM100 berechnet auf Basis des höheren der beiden energieäquivalenten Mittelwerte die Expositionszeit, bei der der Auslösewert und der Expositionsgrenzwert nach EU-Richtlinie 2002/44/EG erreicht würden. Außerdem wird die abgelaufene Messzeit angezeigt. Sie sollte mindestens 30 Sekunden betragen. Entscheidend für die Messdauer ist jedoch, dass sich der energieäquivalente Mittelwert nur noch unwesentlich ändert.

Das VM100A erlaubt die gleichzeitige Messung an beiden Händen mittels zweier Triaxial-Beschleunigungsaufnehmer. Wird mit dem VM100B oder nur mit einem

Aufnehmer gemessen, muss dieser an Eingang 1 angeschlossen und die Messung für beide Hände separat durchgeführt werden. Die Anzeigewerte von Sensor 2 sind dann nicht relevant.

Rechts werden die Messwerte X/Y/Z als Zeitverlauf grafisch dargestellt (Bild 12). Anders als bei den links angezeigten Zahlenwerten handelt es sich um die drei bzw. sechs Effektivwerte für X/Y/Z. Diese werden mit 1 s Mittelungsdauer berechnet, was den Vorteil hat, dass auch kurzzeitige Veränderungen sichtbar werden. So lassen sich zum Beispiel Störungen während der Messzeit erkennen. Weiterhin werden der bzw. die energieäquivalente(n) Mittelwert(e) mit Mittelung über die gesamte Messdauer dargestellt. Das Schreiben der Amplitudenverlaufskurven beginnt erst nach 15 s nach Start des Moduls, um Einschwingvorgänge zu unterdrücken. Durch Berühren der diesbezüglichen Meldung im Diagramm kann die Wartezeit übersprungen werden.

Die Diagrammaufzeichnung kann pausiert (Ⅱ) oder neu gestartet (I◄) werden.

→ Eine Messung beginnt immer mit dem Berühren der Reset-Schaltfläche Dadurch wird die Bildung der Intervall-Effektivwerte neu gestartet und die Messdaueranzeige zurückgesetzt.

🕛 Hand-Arm	Vik	orati	on		• €				21/01/22 11:32:57 22 ℃	••• •
	10000)								
Sensor 1: Right 1X: 19.18 m/s ² RMS 1Y: 13.41 m/s ² RMS 1Z: 0.61 m/s ² RMS a _{w1} = 23.416 m/s ²	1000 100									K
Sensor 2: Left 2X: 0.00 m/s ² RMS 2Y: 0.00 m/s ² RMS 2Z: 0.00 m/s ² RMS a _{w2} = ???	1		<u>}</u>							
Duration 00:02:13 Time to reach Exposure Action Value (2:50): 0 h 5 min Exposure Limit Value (5:00):	0.1 0.01 Now	11:31:56	11:30:56	77:77:77	77.77.77	77:77:77	77:77:77	77:77:77	77:77:77	72:77:97
0 h 22 min										

Bild 111: Messwertanzeige im Modul Hand-Arm-Schwingung

Die Messwertspeicherung erfolgt als CSV-Datentabelle. Dazu öffnen Sie das Speichermenü und wählen CSV-Speicherung (vgl. Abschnitt 5). Der Speicherknopf erscheint danach in gelb mit dem Text "LOG". Die Messwerte werden nun im Sekundentakt in eine Datei geschrieben. Der Dateiname und die Messwertanzahl werden am oberen Rand des Diagramms angezeigt. Zum Beenden der Aufzeichnung berühren Sie erneut die Speicher-Schaltfläche.

Nach 24 Stunden wird die CSV-Datei geschlossen und automatisch eine neue erstellt. Diese erhält den gleichen Dateinamen mit der Ergänzung "..._a.csv", die nächste "..._b.csv", bis die Aufzeichnung nach 27 Tagen bei "..._z.csv" beendet wird. Die gespeicherten Dateien finden Sie auf der SD-Karte im Verzeichnis "HAND-ARM".

Bild 112 zeigt ein Beispiel für eine CSV-Aufzeichnung. Im Kopfteil finden Sie Angaben zum Messgerät und den verwendeten Sensoren. Die Messwerttabelle beginnt mit den Kanaleinstellungen, wie Filter und Maßeinheiten. Ab Zeile 20 folgen die aufgezeichneten Messwerte von drei bzw. sechs Kanälen und energieäquivalente Mittelwert für eine oder beide Hände mit Zeitstempel.

Alternativ kann das Diagramm als BMP-Bildschirmfoto gespeichert werden. Näheres zur Messwertspeicherung finden Sie in Abschnitt 5.

HAND-ARM	VIBRATION							
Instr.:	VM100A	Ser.:	123456					
Comment:								
NFC Id:								
Sensor 1X:	KS963B10	Ser.:	20013	Sensit.:	10.221	mV/ms^-2		
Sensor 1Y:	KS963B11	Ser.:	20013	Sensit.:	10.154	mV/ms^-2		
Sensor 1Z:	KS963B12	Ser.:	20013	Sensit.:	10.167	mV/ms^-2		
Sensor 2X:	KS963B13	Ser.:	20014	Sensit.:	10.313	mV/ms^-2		
Sensor 2Y:	KS963B14	Ser.:	20014	Sensit.:	10.354	mV/ms^-2		
Sensor 2Z:	KS963B15	Ser.:	20014	Sensit.:	10.879	mV/ms^-2		
Date:	21.01.2022							
Temp:	22	°C						
Channel:	1X	1Y	1Z	2X	2Y	2Z	a_v1	a_v2
Filter:	Wh	Wh	Wh	Wh	Wh	Wh		
Factor:	1.00	1.00	1.00	1.00	1.00	1.00		
Unit:	m/s²	m/s²	m/s²	m/s²	m/s²	m/s²	m/s²	m/s²
13:56:39	6.434	1.551	6.128	0.478	0.477	0.476	9.020	0.826
13:56:40	6.433	1.551	6.127	0.478	0.477	0.477	9.018	0.827
13:56:41	6.432	1.551	6.126	0.478	0.477	0.477	9.017	0.827
13:56:42	6.431	1.551	6.125	0.478	0.477	0.477	9.016	0.827

Bild 112: Beispiel für eine CSV-Messwertaufzeichnung

Hinweis: Um Bedienfehlern vorzubeugen, erlaubt das VM100 keine unbewertete Messung im Hand-Arm-Modul. Sollte es zum Beispiel für die Kalibrierung erforderlich sein, ohne das Bewertungsfilter Wh zu messen, wechseln Sie in die Betriebsart Amplitude/Zeit (Abschnitt 4.2) und machen dort folgende Einstellungen für die Messkanäle 1X, 1Y und 1Z:

- Hochpass: 6 Hz
- Tiefpass: 1500 Hz
- Modus: RMS(T)
- Verstärkung: 1

4.10. Modul Ganzkörper-Schwingung

4.10.1. Grundlagen

Dieses Modul unterstützt die Messung von Ganzkörper-Vibrationen nach ISO 2631. Dabei handelt es sich um Vibrationen, die über Gesäß und Rücken des sitzenden Menschen, die Füße des stehenden Menschen sowie Kopf und Rücken des liegenden Menschen einwirken. Diese können z.B. zu Rückenschmerzen und Schädigungen der Wirbelsäule führen. Relevant für die Bewertung der so gemessenen Vibrationen ist die EU-Richtlinie 2002/44/EG. Die Richtlinie legt folgende Grenzwerte fest:

	Ganzkörper, RMS	Ganzkörper, VDV
Auslösewert	0,5 m/s ²	9,1 m/s ^{1,75}
Expositionsgrenzwert	1,15 m/s ²	21 m/s ^{1,75}

Wird der Auslösewert überschritten, sind technische und organisatorische Maßnahmen zur Verringerung der Schwingungsbelastung einzuleiten.

Der **Expositionsgrenzwert** darf keinesfalls überschritten werden. Sollte dies geschehen sein, sind unverzüglich Maßnahmen zur Senkung der Schwingungsbelastung zu treffen.

Die Schwingungsbelastung kann auf Basis von Stichprobenmessungen ermittelt werden.

Die oben genannten Grenzwerte entsprechen dem normierten **Tagesexpositionswert** A(8), der sich auf einen Arbeitstag von 8 Stunden bezieht. Diese Rechengröße dient zum einfachen Vergleich von Schwingungseinwirkungen. Zur Ermittlung von A(8) ist keine achtstündige Messung erforderlich. Man führt lediglich Kurzzeitmessungen während repräsentativer Arbeitsabschnitte durch und normiert die Ergebnisse auf acht Stunden. Der Tagesexpositionswert errechnet sich dann nach:

$$A(8) = a_w \sqrt{\frac{T_e}{T_0}}$$

Gleichung 4

Dabei sind:

A(8) der Tagesexpositionswert

aw die drei Effektivwerte awx, awy und awz,
 wobei folgende Frequenzbewertungen erfolgen:
 X und Y mit Bewertungsfilter Wd und mit Gewichtungsfaktor 1,4
 Z mit Bewertungsfilter Wk und mit Gewichtungsfaktor 1,0

- Te die Dauer der Schwingungsbelastung pro Arbeitstag
- T₀ die Bezugsdauer von 8 Stunden

Der Tagesexpositionswert kann sich aus mehreren Belastungsabschnitten mit unterschiedlichen Schwingamplituden zusammensetzen. Dies trifft zu, wenn z.B. längere Unterbrechungen vorliegen, Arbeitsmittel oder deren Einsatzbedingungen wechseln. Ein Belastungsabschnitt zeichnet sich durch annähernd gleichbleibende Schwingungsbelastung mit einem Anteil von Unterbrechungen unter 10 % aus. Ein aus mehreren Belastungsabschnitten resultierende Tagesexpositionswert berechnet sich wie folgt. Für die Richtungen X/Y/Z werden drei separate Tagesexpositionswerte ermittelt. Der größte der drei Werte wird zur Gefährdungsbeurteilung herangezogen, d.h. mit Grenzwerten nach nach der EU-Richtlinie verglichen.

$$A_{x}(8) = \sqrt{\frac{1}{T_{0}} \sum_{i=1}^{n} a_{wxi}^{2} T_{ei}}$$
Gleichung 5

$$A_{y}(8) = \sqrt{\frac{1}{T_{0}} \sum_{i=1}^{n} a_{wyi}^{2} T_{ei}}$$
Gleichung 6

$$A_{z}(8) = \sqrt{\frac{1}{T_{0}} \sum_{i=1}^{n} a_{wzi}^{2} T_{ei}}$$
Gleichung 7

Dabei sind:

 $A_{x/y/z}(8)$ die Tagesexpositionswerte der drei Richtungen X/Y/Z

- a_{wx/y/zi} die energieäquivalenten Mittelwerte (a_w) der der Beschleunigungen der drei Richtungen X/Y/Z während des i-ten Belastungsabschnitts, wobei folgende Bewertungen erfolgen:
 - X und Y mit Bewertungsfilter Wd und mit Gewichtungsfaktor 1,4
 - Z mit Bewertungsfilter Wk und mit Gewichtungsfaktor 1,0
- n die Zahl der Belastungsabschnitte

T_{ei} die Dauer des i-ten Belastungsabschnitts

T₀ die Bezugsdauer von 8 Stunden

Die gezeigten Berechnungen des Tagesexpositionswerts basieren auf Effektivwerten (RMS).

Alternativ dazu hat sich für Ganzkörper-Schwingung, insbesondere im angelsächsischen Raum, die Berechnung auf Basis von **Schwingungsdosiswerten (VDV)** etabliert. Dabei handelt es sich um die vierte Wurzel aus der Summe der vierten Potenzen mit der Maßeinheit m/s^{1,75}. Diese Methode bewertet stoßartige Einzelvibrationen stärker als der quadratische Mittelwert.

Die Berechnung des Tagesexpositionswerts VDV(8) erfolgt nach:

$$VDV(8) = VDV \cdot \sqrt[4]{\frac{T_{exp}}{T_{meas}}}$$

Gleichung 8

Dabei sind:

VDV(8) der Tagesexpositionswert

- VDV der frequenzbewertete Schwingungsdosiswert während der Einwirkungsdauer
- T_{exp} die Einwirkungsdauer

T_{meas} die Messdauer

Der Tagesexpositionswert auf Basis von VDV-Werten kann sich ebenfalls aus mehreren Belastungsabschnitten mit unterschiedlichen Schwingungsdosiswerten zusammensetzen. Für die Richtungen X/Y/Z werden drei separate Tagesexpositionswerte ermittelt. Der größte der drei Werte wird zur Gefährdungsbeurteilung herangezogen, d.h. mit den Grenzwerten nach der EU-Richtlinie verglichen.

$$VDV_{x}(8) = \sqrt[4]{\sum_{i=1}^{n} VDV_{xi}^{4}} \cdot \frac{T_{iexp}}{T_{imeas}}$$
Gleichung 9
$$VDV_{y}(8) = \sqrt[4]{\sum_{i=1}^{n} VDV_{yi}^{4}} \cdot \frac{T_{iexp}}{T_{imeas}}$$
Gleichung 10
$$VDV_{z}(8) = \sqrt[4]{\sum_{i=1}^{n} VDV_{zi}^{4}} \cdot \frac{T_{iexp}}{T_{imeas}}$$
Gleichung 11

Dabei sind:

VDV_{X/Y/Z}(8) die Tagesexpositionswerte der drei Richtungen X/Y/Z

 $VDV_{x/y/zi}$ die frequenzbewerteten Schwingungsdosiswerte der drei Richtungen X/ Y/Z während des i-ten Belastungsabschnitts

Texp die Einwirkungsdauer des i-ten Belastungsabschnitts

T_{meas} die Messdauer während des i-ten Belastungsabschnitts

4.10.2. Ganzkörper-Sensoren

Zur Messung von Ganzkörper-Vibrationen kommt in der Regel ein dreiachsi-Sitz-Beschleunigungsaufnehmer ger nach ISO 10326-1 zum Einsatz, der in ein flaches Kissen aus Gummi eingebaut ist. Er passt sich optimal an die Grenzfläche zwischen der Testperson und der Schwingungsquelle an. Metra

Bild 113: KS963B100-S

bietet den Typ KS963B100-S an. Der Sensor muss an Eingang 1 angeschlossen sein.

Folgende Messorte kommen in Betracht:

- Die Sitzfläche bei sitzender Position
- Die Rückenlehne bei sitzender Position
- Unter den Füßen bei sitzender Position
- Unter den Füßen bei stehender Position
- Unter dem Becken bei liegender Position .
- Unter dem Kopf bei liegender Position •

Bild 114 zeigt die Anordnung der Koordinatenrichtungen gemäß ISO 2631. Es ist ersichtlich, dass immer die X-Achse in Blickrichtung und die Z-Achse längs der Wirbelsäule ausgerichtet ist. Der Schwingungsaufnehmer ist entsprechend auszurichten. Eine Ausnahme bildet die Sensorausrichtung bei Messungen an der Rückenlehne (vgl. Hinweis unter Tabelle 3).

Bild 114: Koordinatensysteme für Ganzkörper-Schwingungen nach ISO 2631

Man unterscheidet bei Ganzkörper-Vibration zwischen Gesundheits- und Komfortbewertung. Je nach Körperhaltung und Bewertung unterscheiden sich die zu verwendenden Bewertungsfilter und Gewichtungsfaktoren. Tabelle 3 zeigt die Zuordnung.

Ganzkörper-Gesundheitsbewertung									
Desition	Maggaut	Sanaahaa	Frequenz-	Bewertungs-					
Position	Messori	Sensorachse	bewertung	faktor (k)					
Sitzend	Sitafläche	X / Y	W _d	1,4					
Sitzend	Sitzhache	Z	W_k	1					
Ganzkörper-Komfortbewertung									
	Sitafläche	X / Y	W _d	1					
	Sitzhache	Z	W_k	1					
	Fußnlattform	X / Y	W	0,25					
Sitzend	Fuspiationin	Z	vv _k	0,4					
		X	W_d	0,4					
	Rückenlehne*	Y	W_d	0,5					
		Z	Wc	0,8					
Stahand	En lattform	X / Y	W_d	1					
Stenend	Fusplationin	Z	W_k	1					
	Unter dam Daaltan	X (vertikal)	W_k	1					
Liegend	Unter dem Becken	Y / Z (horizontal)	W_d	1					
_	Unter dem Kopf	X (vertikal)	Wj	1					
In Eisenbahne	en:								

Stehend Sitzend Liegend	Fußplattform Sitz/Lehne/Füße Liegefläche, Becken/ Kopf	X / Y / Z	W _b	1
In Gebäuden:				
Unbestimmt	In Gebäuden	X / Y / Z	Wm	1

Tabelle 3: Bewertungsfilter und -faktoren für Ganzkörperschwingung

* Bei Messungen an der Rückenlehne soll die Z-Achse, wie bei allen Positionen, in Richtung der Wirbelsäule liegen. Wird ein Sitzkissen-Beschleunigungsaufnehmer zwischen Mensch und Rückenlehne platziert, liegt dessen Z-Achse jedoch senkrecht zur Rückenlehne und damit auch zur Wirbelsäule. Um die richtige Achsenzuordnung herzustellen, werden für Messungen an der Rückenlehne im VM100 die Bewertungsfilter und -faktoren für X und Z getauscht, wie in der Tabelle dargestellt.

Bei der Messung von Ganzkörper-Vibrationen wird der Frequenzbereich von 0,4 bis 100 Hz betrachtet. Je nach Anwendung kommen dabei unterschiedliche Bewertungsfilter zur Anwendung. Die Bilder 115 bis 119 zeigen die im VM100 implementierten Frequenzbewertungen.

Bild 115: Bewertungsfilter Wd

Bild 116: Bewertungsfilter Wk

Bild 117: Bewertungsfilter Wj

Bild 118: Bewertungsfilter Wc Für Kalibrier- und Testzwecke ist auch eine unbewertete Messung möglich. In die-

Bild 119: Bewertungsfilter Wm

sem Fall wird nur die Bandbegrenzung von 0,4 bis 100 Hz (-3 dB) wirksam.

4.10.3. Überprüfung am Einsatzort

Die Norm ISO 8041-1 empfiehlt vor der Messung eine Überprüfung von Messgerät und Sensor am Einsatzort. Dafür ist der Schwingungskalibrator VC21 von Metra geeignet (vgl. Abschnitt 4.9.3). Er liefert das genormte Referenzsignal für Ganzkörper-Messungen von 1 m/s² mit 15,92 Hz. Der im Sitzkissen eingebaute Sensor KS963B100 besitzt Gewinde zur Montage in den Achsenrichtungen X/Y/Z. Der Sensor ist zur Montage auf dem Schwingungskalibrator aus dem Sitzkissen zu entnehmen.

4.10.4. Messung

Bild 120 zeigt die Messwertausgabe im Modul Ganzkörper-Schwingung. Im oberen Teil befindet sich die einheitliche Menüleiste, die in Abschnitt 3.3 beschrieben wird. Links oben wird die gewählte Bewertung (Gesundheit oder Komfort) angezeigt. Außerdem finden Sie hier die entsprechenden Bewertungsfilter der drei Achsenrichtungen sowie die Bewertungsfaktoren nach ISO 2631 (vgl. Tabelle 3).

Darunter werden die Schwingwerte für die drei Achsenrichtungen ausgegeben. Es handelt sich dabei um Intervall-Effektivwerte, die über die gesamte Messdauer gemittelt werden. Das heißt, dass diese Werte immer stabiler werden, ja länger die Messdauer wird.

Bild 120: Messwertanzeige im Modul Ganzkörper-Schwingung

Darunter wird der größte der drei Achsenwerte angezeigt, welcher nach ISO 2631 zur Berechnung des Tagesexpositionswerts A(8) herangezogen wird (vgl. Abschnitt 4.10.1). Das VM100 berechnet daraus die Expositionszeit, bei der der Auslösewert und der Expositionsgrenzwert nach EU-Richtlinie 2002/44/EG erreicht würden. Außerdem wird die abgelaufene Messzeit angezeigt. Sie sollte mindestens 2 Minuten betragen. Entscheidend für die Messdauer ist jedoch, dass sich die Effektivwerte der drei Richtungen nur noch unwesentlich ändern.

Nach ISO 2631-1 unterscheidet man zwischen der Basisbewertung über den Intervall-Effektivwert und der Zusatzbewertung über den Schwingungsdosiswert (VDV). Der Schwingungsdosiswert sollte herangezogen werden, wenn die Schwingungen sehr stoßhaltig sind. Als Entscheidungskriterium empfiehlt ISO 2631-1 den Scheitelwert (Crest-Faktor). Dabei handelt es sich um den Quotienten aus dem Spitzenwert und dem Intervall-Effektivwert. Liegt der Crest-Faktor unter 9, genügt in der Regel die Basisbewertung. Liegt er darüber, sollte der VDV-Wert gemessen werden.

Der MTVV (Maximum Transient Vibration Value) liefert ebenfalls eine Aussage über die Stoßhaltigkeit. Er steht für den größten gemessenen Effektivwert mit 1 s Mittelungsdauer. Alle Messwerte werden in der jeweiligen Kanalfarbe dargestellt.

Rechts werden die Messwerte X/Y/Z als Zeitverlauf grafisch dargestellt. Anders als bei den Zahlenwerten links handelt es sich um Effektivwerte mit 1 s Mittelungsdauer. Das hat den Vorteil, dass auch kurzzeitige Veränderungen sichtbar werden. So lassen sich zum Beispiel Störungen während der Messzeit erkennen oder Einzelereignisse detektieren, wie das Überfahren einer Schwelle mit einem Gabelstapler.

Bei VDV-Messung werden im Diagramm die VDV-Werte mit unbegrenzter Mittelungszeit dargestellt.

Das Schreiben der Amplitudenverlaufskurven beginnt erst nach 15 s nach Start des Moduls, um Einschwingvorgänge zu unterdrücken. Durch Berühren der diesbezüglichen Meldung im Diagramm kann die Wartezeit übersprungen werden.

Die Diagrammaufzeichnung kann pausiert (II) oder neu gestartet (I◀) werden.

→ Eine Messung beginnt immer durch Berühren der Reset-Schaltfläche . Dadurch wird die Bildung der Intervall-Effektivwerte neu gestartet und die Messdaueranzeige zurückgesetzt.

Über die Taste 🕅 öffnen Sie das Menü für Einstellungen (Bild 121). Hier legen Sie fest, ob eine Messung zur Gesundheits- oder Komfortbewertung durchgeführt wird. Außerdem können Sie zwischen Effektivwert (RMS) und Schwingungsdosiswert (VDV) umschalten (vgl. Abschnitt 4.10.1).

Bild 121: Einstellungen für Ganzkörper-Schwingung

Die Messwertspeicherung erfolgt als CSV-Datentabelle. Dazu öffnen Sie das Speichermenü und wählen CSV-Speicherung (vgl. Abschnitt 5). Der Speicherknopf erscheint danach in gelb mit dem Text "LOG". Die drei gemessenen Effektivwerte mit je 1 s Mittelungsdauer werden nun im Sekundentakt in eine Datei geschrieben. Der Dateiname und die Messwertanzahl werden am oberen Rand des Diagramms angezeigt. Zum Beenden der Aufzeichnung berühren Sie erneut die Speicher-Schaltfläche. Nach 24 Stunden wird die CSV-Datei geschlossen und automatisch eine neue erstellt. Diese erhält den gleichen Dateinamen mit der Ergänzung "…_a.csv", die nächste "…_b.csv", bis die Aufzeichnung nach 27 Tagen bei "…_z.csv" beendet wird.

Die gespeicherten Dateien finden Sie auf der SD-Karte im Verzeichnis "WHOLE-BODY".

Bild 122 zeigt ein Beispiel für eine CSV-Aufzeichnung. Im Kopfteil finden Sie Angaben zum Messgerät und den verwendeten Sensoren. Die Messwerttabelle beginnt mit den Kanaleinstellungen, wie Filter und Maßeinheiten. Ab Zeile 20 folgen die aufgezeichneten Messwerte (Intervall-Effektivwerte) der drei Kanäle X/Y/Z mit Zeitstempel.

WHOLE-BOD	OY VIBRATION	1				
Instr.:	VM100A	Ser.:	123456			
Comment:						
NFC Id:						
Sensor 1X:	KS903B10	Ser.:	20014	Sensit.:	10.313	mV/ms^-2
Sensor 1Y:	KS903B10	Ser.:	20014	Sensit.:	10.354	mV/ms^-2
Sensor 1Z:	KS903B10	Ser.:	20014	Sensit.:	10.879	mV/ms^-2
Date:	25.01.2021					
Temp:	21	°C				
Channel:	1X	1Y	1Z			
Filter:	Wd	Wd	Wk			
Factor:	Jan 40	Jan 40	1.00			
Unit:	m/s²	m/s²	m/s²			
11:37:37	1.087	1.059	0.388			
11:37:38	1.012	1.123	0.335			
11:37:39	0.965	0.953	0.248			

Bild 122: Beispiel für eine CSV-Messwertaufzeichnung

Alternativ kann das Diagramm als BMP-Bildschirmfoto gespeichert werden. Näheres zur Messwertspeicherung finden Sie in Abschnitt 5.

4.11. Modul Ganzkörper-Schwingung mit 3 Sensoren

4.11.1. Grundlagen

Dieses Modul dient zur Bewertung des Fahrkomforts in Kraftfahrzeugen nach GB/T 4970-2009. Grundlage ist die Messung von Ganzkörper-Vibrationen nach ISO 2631. In diesem Fall werden beim Befahren einer spezifizierten Teststrecke gleichzeitig die Vibrationen auf der Sitzfläche, der Sitzlehne und der Fußfläche gemessen. Die drei jeweils dreiachsig erfassten Schwingamplituden werden vektoriell zu einem Schwingungsgesamtwert addiert. Für jede Messposition kommen dabei festgelegte Bewertungsfilter und -faktoren zur Anwendung.

Die Funktionsweise der Messung entspricht der des Moduls Ganzkörper-Schwingung (vgl. Abschnitt 4.10) mit der Unterscheidung, dass hier drei triaxiale Sensorsignale erfasst werden. Der Anschluss von drei Sensoren an die Eingänge 1/2/3 ist zwingend erforderlich. Anderenfalls erfolgt eine Fehlermeldung. Auf dem dreikanaligen VM100B steht dieses Modul nicht zur Verfügung.

4.11.2. Ganzkörper-Sensoren

Zur Messung von Ganzkörper-Vibrationen kommen dreiachsige Sitz-Beschleunigungsaufnehmer nach ISO 10326-1 zum Einsatz, die in ein flaches Kissen aus Gummi eingebaut sind. Metra bietet den Typ KS963B100-S an, der den Festlegungen nach Anhang B von GB/T 4970-2009 entspricht. Die

Bild 123: KS963B100-S

Zuordnung der Sensoren zu den Messeingängen ist wie folgt:

Eingang 1: Sitzfläche

Eingang 2: Sitzlehne

Eingang 3: Fußfläche

4.11.3. Messung

Bild 120 zeigt die Messwertausgabe im Modul Ganzkörper-Schwingung. Im oberen Teil befindet sich die einheitliche Menüleiste, die in Abschnitt 3.3 beschrieben wird.

Bild 124: Messwertanzeige im Modul Ganzkörper-Schwingung - 3 Sensoren

Links werden die Schwingwerte für die Messpositionen Sitz (Seat), Lehne (Backrest) und Füße (Feet) für je drei Achsenrichtungen ausgegeben. Es handelt sich dabei um Intervall-Effektivwerte, die über die gesamte Messdauer gemittelt werden. Das heißt, dass diese Werte immer stabiler werden, ja länger die Messdauer wird. Außerdem werden für jede Position die Schwingungsgesamtwerte ermittelt.

$$a_{vi} = \sqrt{k_x^2 a_{wx}^2 + k_y^2 a_{wy}^2 + k_z^2 a_{wz}^2}$$
 Gleichung 12

Dabei sind:

\mathbf{a}_{wi}	der energieäquivalente Mittelwert (Schwingungsgesamtwert) der frequenzbewerteten Beschleunigung für den Messpunkt i
k	der Bewertungsfaktor für die jeweilige Messrichtung (Tabelle 4)
a	die frequenzbewertete Beschleunigung für die jeweilige Messrichtung (Bewertungsfilter vgl. Tabelle 4)

Messpunkt	Messrichtung	Bewertungsfaktor	Bewertungsfilter
	Х	1,00	Wd
Sitzfläche	Υ	1,00	Wd
	Z	1,00	Wk
	X	0,40	Wd
Sitzlehne*	Υ	0,50	Wd
	Ζ	0,80	Wc
	X	0,25	Wk
Fußfläche	Υ	0,25	Wk
	Ζ	0,40	Wk

Tabelle 4: Bewertungsfilter und -faktoren nach GB/T 4970-2009

* Bei Messungen an der Rückenlehne soll die Z-Achse, wie bei allen Positionen, in Richtung der Wirbelsäule liegen. Wird ein Sitzkissen-Beschleunigungsaufnehmer zwischen Mensch und Rückenlehne platziert, liegt dessen Z-Achse jedoch senkrecht zur Rückenlehne und damit auch zur Wirbelsäule. Um die richtige Achsenzuordnung herzustellen, werden für Messungen an der Rückenlehne im VM100 die Bewertungsfilter und -faktoren für X und Z getauscht.

Die Ausrichtung der Messachsen in den Messpositionen finden Sie in Bild 114 auf Seite 80.

Unter Gesamtsumme (Total Sum) finden Sie die Vektorsumme av aus den Schwingungsgesamtwerten der drei Messpositionen.

$$a_{v} = \sqrt{(a_{v1}^{2} + a_{v2}^{2} + a_{v3}^{2})}$$

Rechts werden die Messwerte als Zeitverlauf grafisch dargestellt. Hierbei handelt es sich um die je drei Effektivwerte für X/Y/Z an den drei Messpositionen. Anders als die Zahlenwerte links werden sie jedoch mit 1 s Mittelungsdauer berechnet, was den Vorteil hat, dass auch kurzzeitige Veränderungen sichtbar sind. So lassen sich zum Beispiel Störungen während der Messzeit erkennen oder Einzelereignisse detektieren. Außerdem zeigt das Diagramm die über die Messdauer gemittelte Gesamtsumme.

Das Schreiben der Amplitudenverlaufskurven beginnt erst nach 15 s nach Start des Moduls, um Einschwingvorgänge zu unterdrücken. Durch Berühren der diesbezügli-

chen Meldung im Diagramm kann die Wartezeit übersprungen werden.

Die Diagrammaufzeichnung kann pausiert (II) oder neu gestartet (I◀) werden.

Alle Messwerte werden in der jeweiligen Kanalfarbe dargestellt.

Oben rechts sehen Sie einen farbigen Indikator in der Form eines Smileys der anzeigt, in welcher der sechs Komfortzonen die ermittelte Gesamtsumme liegt.

Bild 125: Komfortzonen

Durch Berührung des Indikators öffnet sich ein Menü zur Eingabe der Grenzwerte. Die Vorbelegung entspricht GB/T 4970-2009.

→ Eine Messung beginnt immer durch Berühren der Reset-Schaltfläche 🔄. Dadurch wird die Bildung der Intervall-Effektivwerte neu gestartet und die Messdaueranzeige zurückgesetzt.

Die Messwertspeicherung erfolgt als CSV-Datentabelle. Dazu öffnen Sie das Speichermenü und wählen CSV-Speicherung (vgl. Abschnitt 5). Der Speicherknopf erscheint danach in gelb mit dem Text "LOG". Die Messwerte werden nun im Sekundentakt in eine Datei geschrieben. Der Dateiname und die Messwertanzahl werden am oberen Rand des Diagramms angezeigt. Zum Beenden der Aufzeichnung berühren Sie erneut die Speicher-Schaltfläche. Nach 24 Stunden wird die CSV-Datei geschlossen und automatisch eine neue erstellt. Diese erhält den gleichen Dateinamen mit der Ergänzung "... a.csv", die nächste "... b.csv", bis die Aufzeichnung nach 27 Tagen bei "... z.csv" beendet wird.

Die gespeicherten Dateien finden Sie auf der SD-Karte im Verzeichnis "WHOLE-BODY".

Bild 126 zeigt ein Beispiel für eine CSV-Aufzeichnung. Im Kopfteil finden Sie Angaben zum Messgerät und den verwendeten Sensoren. Die Messwerttabelle beginnt mit den Kanaleinstellungen, wie Filter und Maßeinheiten. Ab Zeile 20 folgen die aufgezeichneten Messwerte (Intervall-Effektivwerte und Summen) der neun Kanäle X/Y/Z mit Zeitstempel.

WHOLE-BODY	HOLE-BODY VIBRATION WITH 3 SENSORS												
Instr.:	VM100A	Ser.:	221236										
Comment:													
NFC Id:													
Sensor 1X:	KS963B100-S	Ser.:	220139	Sensit .:	10,231	mV/ms^-2							
Sensor 1Y:	KS963B100-S	Ser.:	220139	Sensit .:	10,147	mV/ms^-2							
Sensor 1Z:	KS963B100-S	Ser.:	220139	Sensit .:	10,183	mV/ms^-2							
Sensor 2X:	KS963B100-S	Ser.:	220156	Sensit .:	10,201	mV/ms^-2							
Sensor 2Y:	KS963B100-S	Ser.:	220156	Sensit.:	10,158	mV/ms^-2							
Sensor 2Z:	KS963B100-S	Ser.:	220156	Sensit.:	10,215	mV/ms^-2							
Sensor 3X:	KS903B100	Ser .:	20014	Sensit .:	10,033	mV/ms^-2							
Sensor 3Y:	KS903B100	Ser.:	20014	Sensit.:	10,054	mV/ms^-2							
Sensor 3Z:	KS903B100	Ser.:	20014	Sensit .:	10,079	mV/ms^-2							
Date:	08/03/23												
Temp:	21	°C											
Channel:	1X	1Y	1Z	2X	2Y	2Z	3X	3Y	3Z	a_v1	a_v2	a_v3	a_vtot
Filter:	Wd	Wd	Wk	Wc	Wd	Wd	Wk	Wk	Wk				
Factor:	1	1	1	0,8	0,5	0,4	0,25	0,25	0,4				
Unit:	m/s ²	m/s ²	m/s ²	m/s ²	m/s ²	m/s ²	m/s ²	m/s ²	m/s ²	m/s ²	m/s ²	m/s ²	m/s ²
10:01:30	662,776	816,289	492,845	64,716	76,272	115,661	186,345	190,646	305,835	1161,248	152,916	405,716	1239,55
10:01:32	572,242	679,005	390,835	47,142	56,395	85,899	134,502	137,626	221,518	970,186	113,054	293,431	1019,875
10:01:33	500,216	578,082	323,749	38,496	46,067	70,19	109,846	112,402	180,909	830,185	92,362	239,642	869,003
10:01:34	433,592	500,813	280,407	33,34	39,896	60,788	95,134	97,348	156,679	719,336	79,99	207,546	752,939
10:01:35	387,847	447,957	250,825	29,82	35,684	54,372	85,092	87,072	140,145	643,431	71,547	185,641	673,487
10:01:36	354,101	408,954	228,992	27,222	32,576	49,635	77,68	79,488	127,943	587,425	65,314	169,476	614,863
10:01:37	327,848	378,625	212,022	25,204	30,159	45,953	71,919	73,595	118,489	543,869	60,469	156,934	569,279
10:01:38	306,68	354,174	198,342	23,576	28,212	42,987	67,276	68,847	110,853	508,755	56,565	146,814	532,527
10:01:39	289,143	333,92	187,013	22,228	26,598	40,531	63,431	64,912	104,523	479,667	53,332	138,427	502,082
10:01:40	274,306	316,786	177,429	21,087	25,233	38,454	60,177	61,583	99,174	455,059	50,597	131,336	476,327
Bild 126	· Reisnie	al eine	or CS	V_ A 11	fzeicl	nnina							

Bild 126: Beispiel einer CSV-Aufzeichnung

5. Messwertspeicherung und NFC-Funktion

5.1. Ordner und Dateinamen

In das Menü zur Messwertspeicherung gelangen Sie durch Berühren von 🗐 in der Menüleiste. Sein Aussehen kann sich je nach gewähltem Messmodul unterscheiden. Bild 127 zeigt das Speichermenü für Amplitude-/Zeit-Messungen.

Bild 127: Menü zur Messwertspeicherung

Das VM100 verwendet ausschließlich folgende Standard-Dateiformate:

- BMP (Bitmap) ist ein Rastergrafikformat und wird für Bildschirmaufnahmen (Screenshots) verwendet. Bitmap-Dateien können in gängigen Bildbetrachtern geöffnet werden.
- CSV (Character-Separated Values) wird für Messwerte benutzt. Trennzeichen ist das Semikolon. Die textbasierten Dateien können in Tabellenkalkulationsprogramme eingelesen werden.
- WAV (WAVE) ist ein Format für Audiodateien. Es wird im VM100 für Rohdaten verwendet. WAV-Dateien können in Audioplayern abgespielt und in viele Signalanalyseprogramme eingelesen werden.

Die Daten werden vom VM100 in einer fest vorgegebenen Ordnerstruktur gespeichert. Folgende Ordnernamen werden verwendet:

AMP-TIME	Messdaten aus dem Modul Amplitude/Zeit
FFT	Messdaten aus dem Modul Frequenzanalyse (FFT)
AMP-RPM	Messdaten aus dem Modul Amplitude/Drehzahl
ROUTES	Messrouten aus dem Modul Maschinenüberwachung
TREND	Mess-/Trenddaten aus dem Modul Maschinenüberwachung
ENVELOPE	Messdaten aus dem Modul Hüllkurvenanalyse
BEARINGS	Wälzlagerliste für das Modul Hüllkurvenanalyse
BAL	Messdaten aus dem Modul Auswuchtung
OCTAVE	Messdaten aus dem Modul Terzbandanalyse
HAND-ARM	Messdaten aus dem Modul Hand-Arm-Schwingung
WHOLE-BODY	Messdaten aus den Modulen Ganzkörper-Schwingung und Ganzkörper – 3 Sensoren
WAV	Rohdaten
NFC	gespeicherte NFC-Tags

In der oberen Zeile finden Sie den zum Speichern verwendeten Ordner, der sich nach dem Messmodul richtet und fest vorgegeben ist. Dahinter steht der **Dateiname** ohne Endung, im Beispiel "AMP_TIME_210104_033949". Dabei handelt es sich um einen vom Gerät vorgeschlagenen Namen, der aus Messmodul, Datum (04.01.21) und Uhrzeit (03:39:49) zusammengesetzt ist. Damit entstehen keine Namensdopplungen. Durch Berühren des Dateinamens können Sie diesen jedoch auch mit der Bildschirmtastatur selbst eingeben.

Darunter kann ein maximal 40 Zeichen langer **Kommentartext** eingegeben werden, der mit den Messwerten gespeichert wird.

→ Bitte fügen Sie keine Dateien oder Ordner mittels anderer Geräte hinzu.

➔ Öffnen Sie von Ihrem PC aus die Dateien nicht direkt vom VM100. Beginnen Sie immer, indem Sie die Datei zunächst in einen Ordner auf dem PC kopieren.

→ Es wird dringend empfohlen, regelmäßig Sicherungskopien der auf der SD-Karte gespeicherten Daten anzulegen.

5.2. NFC-Messstellenerkennung

Durch Berühren von attivieren Sie die Lesefunktion für NFC-Tags. Das sind robuste Speicher in Form von Plastikchips, die über Funk ausgelesen werden. Diese können zum Beispiel an Messorten befestigt werden, an denen wiederkehrende Messungen stattfinden. Das VM100 liest NFC-Tags der Typen, A, B, F und V. Jedes NFC-Tag enthält eine eigene Seriennummer, die das VM100 ausliest. Sonstige NFC-Funktionen werden nicht genutzt. NFC-Tags sind in verschiedenen Ausführungen erhältlich. Es gibt Typen zum Anschrauben (auch auf Metall), zum Ankleben oder in Form von Anhängern. Wir geben Ihnen gern Empfehlungen.

Zur Erkennung bringen Sie das VM100 nach Aktivieren der Lesefunktion bis auf wenige Zentimeter mit der linken oberen Ecke an das NFC-Tag (Bild 128). Bei Erkennung hören Sie einen Signalton und neben der NFC-Taste wird die Seriennummer wird angezeigt.

Bild 128: NFC-Erkennung und sensibler Bereich

Falls gewünscht, können Sie dieser noch einen Klartextnamen zuordnen. Dazu dient das Eingabefeld rechts der Seriennummer. Bei der nächsten Erkennung des NFC-Tags wird dann auch dieser Text angezeigt. Die NFC-Seriennummern und die eingegebenen Namen werden im Verzeichnis "NFC" unter dem Dateinamen "NFC_IDs.csv" auf der SD-Karte abgelegt (Bild 129).

	Α	В
1	044E3BD2DF6480	Motor shaft
2	040855D2DF6481	Fan motor bearing
3	04D125D2DF6480	Gearbox drive side
4	04C60E5A0C5B80	Centrifuge 22a
		-

Bild 129: Beispiel für eine Datei NFC_IDs.csv

5.3. Speichern als Bitmap-Bildschirmfoto

Durch Berühren von speichern Sie ein Bitmap-Bildschirmfoto des Messmoduls, aus dem Sie das Speichermenü aufgerufen haben. Damit lassen sich auf einfache Weise Grafiken und Texte in einer Standard-Datei speichern. Am oberen Bildrand der Bitmap-Datei finden Sie den eingegebenen Kommentar und ggf. die NFC-Seriennummer sowie den zugehörigen Namen. Die BMP-Datei wird in dem zum Messmodul gehörenden Ordner auf der SD-Karte gespeichert.

5.4. Speichern im CSV-Format

Mit der Taste erstellen Sie eine CSV-Datei mit Messwerten. CSV (Characterseparated values) ist ein textbasiertes Format, das tabellierte Daten enthält und zum Beispiel in Tabellenkalkulationsprogrammen geöffnet werden kann. Die Kapitel zu den Messmodulen zeigen Beispiele hierfür. Das VM100 verwendet das Semikolon als Trennzeichen. Die Dateien bestehen immer aus einem Kopf, der Informationen zu den Sensoren, zum Gerät und gewählten Einstellungen enthält. Im Kopf befinden sich auch der eingegebene Kommentartext und ggf. die NFC-Seriennummer. Ab Zeile 20 beginnen die Messwerte. Die CSV-Datei wird in dem zum Messmodul gehörenden Ordner auf der SD-Karte gespeichert. Bei den im Zeitbereich messenden Modulen werden die Werte während der Messung in die CSV-Datei geschrieben. Bei Modulen, die im Frequenzbereich messen, wird das Frequenzspektrum als Tabelle abgelegt.

5.5. Ansehen gespeicherter Messdaten

Die Taste 🛃 dient zum Ansehen der gespeicherten BMP- und CSV-Dateien. Zum Ansehen berühren Sie den betreffenden Ordner und dann den Namen der gewünschten Datei (Bild 130).

Bild 130: BMP-/CSV-Datei ansehen

In Abschnitt 3.5 wird beschrieben, wie Sie die auf der SD-Karte gespeicherten Daten über die USB-Schnittstelle auf einen PC übertragen können.

5.6. Rohdatenaufzeichnung im WAV-Format

Unabhängig vom gewählten Messmodul kann das VM100 **Rohdaten** aufzeichnen. Dabei handelt es sich um die ungefilterten Abtastwerte des Analog-Digital-Wandlers. Die Aufzeichnung erfolgt im WAV-Format (Waveform Audio Format). WAV-Dateien werden von vielen Programmen zur Signalanalyse und von Audioplayern gelesen. Zum Wechsel in das Rohdatenmenü berühren Sie

Die Rohdatenaufzeichnung erfolgt dreikanalig für X/Y/Z von Eingang 1.

Beim Öffnen der Rohdatenaufzeichnung wird die Verstärkung so eingestellt, dass das Signal in den Amplitudenbereich passt, ohne zu übersteuern. Die Verstärkung ist für alle drei Kanäle gleich. Im Diagrammbereich wird die Aussteuerung in Prozent angezeigt.

Die Aufzeichnung erfolgt mit 4,5 kHz Bandbreite bei einer Abtastrate von 9765 Samples/s und 24 Bit Auflösung. Die maximale Aufzeichnungsdauer je Datei beträgt eine Stunde. Die Dateigröße beträgt dann ca. 300 MB.

Den dargestellten Signalausschnitt können Sie mit den Tasten +/- verändern. Der gewählte Ausschnitt hat keinen Einfluss auf die Speicherung.

Berühren Sie , um die Speicherung zu starten. Das Signaldiagramm wird danach nicht mehr aktualisiert. Der Dateiname wird automatisch aus Datum, Startzeit und Amplitudenbereich erzeugt. Beispiel: 240423_115424_120mV.wav.

Unten links wird die Aufzeichnungsdauer angezeigt. Es wird blockweise alle 720 kB gespeichert. Die Maximaldauer beträgt eine Stunde. Durch Berühren von STOP beenden Sie die Aufzeichnung. Die erfassten Rohdaten befinden sich auf der SD-Karte im Verzeichnis WAV. In Abschnitt 3.5 wird beschrieben, wie Sie die auf der SD-Karte gespeicherten Daten über die USB-Schnittstelle auf einen PC übertragen können.

6. Voreinstellungen

Sie können bis zu 10 Sätze von Einstellungen abspeichern, um schneller darauf zuzugreifen. Dies geschieht im Hauptmenü unter "Voreinstellungen" ("Presets"). Dabei werden sämtliche Menüeinstellungen und Einstellungen des Messgrafik gesichert.

Pre	Presets 🗙 🗙					
1	Resonance test	Î				
2	<empty></empty>	╋				
3	<empty></empty>	╋				
4	<empty></empty>	╋				
5	<empty></empty>	╋				
6	<empty></empty>	╋				
7	<empty></empty>	╋				
8	<empty></empty>	╋				
9	<empty></empty>	╋				
10	<empty></empty>	+				

Bild 132: Speichern und Abrufen von Voreinstellungen

Im Auslieferungszustand sind alle Einträge leer. Jede der mit 1 bis 10 nummerierten Schaltflächen kann mit einem Satz Einstellung belegt werden. Dies Geschieht mit der Plus-Schaltfläche . Es öffnet sich die Bildschirmtastatur zur Eingabe des Namens. Die Vorbelegung ist "Preset" mit der entsprechenden Nummer. Durch Drücken der Enter-Taste der Bildschirmtastatur werden die Einstellungen unter dem eingegebenen Namen gespeichert. Es handelt sich dabei immer um die letzten Einstellungen bevor das Menü geöffnet wurde.

Wenn Sie eine vorhandene Einstellung unter Beibehaltung des Namens ändern möchten, gehen Sie wie folgt vor:

- Öffnen Sie das Menü für Voreinstellungen.
- Drücken Sie die entsprechende Schaltfläche zum Laden der gespeicherten Einstellungen. Das Menü schließt sich und das Gerät wechselt in den Messbetrieb.
- Ändern Sie die gewünschte Einstellung.
- Öffnen Sie erneut das Menü für Voreinstellungen.
- Löschen Sie den zu ändernden Eintrag mit 📊
- Legen Sie den gleichen Eintrag mit neu an. Als Vorbelegung erscheint der bisherige Name. Bestätigen Sie diesen mit der Enter-Schaltfläche.
- → Unabhängig von den 10 gespeicherten Voreinstellungen werden vor dem Ausschalten des Gerätes alle Einstellungen gesichert und beim Start neu geladen.

7. Sonstige Einstellungen

7.1. Anzeigeeinstellungen

Öffnen Sie mit adas Hauptmenü und wählen Sie **Einstellungen** (Settings) sowie **Display** (Bild 133).

Main Menu					
Settings	Display	Brightness			
Sensors	Date & Time	Touch Sensitivity			
Presets	Language	Touch Calibration			
Instrument info	Веер	Rotate 180°			
	Factory setup				

Bild 133: Menü für Anzeigeeinstellungen

Mit Helligkeit (Brightness) öffnen Sie das Menü zur Einstellung der Anzeigehelligkeit (Bild 134). Der Anteil der Hintergrundbeleuchtung kann bis zu 50 % vom Gesamtstromverbrauch des Geräts betragen. Eine Reduzierung der Helligkeit auf das erforderliche Maß ist daher sinnvoll, ebenso die Funktion Abdunkeln nach (Dim out after), mit der die Helligkeit eine vorgegebene Zeit nach der letzten Touch-Bedienung stark abgedunkelt wird.

Im Menüpunkt **Touch-Empfindlichkeit** (Touch Sensitivity) stellen Sie ein, wie berührungsempfindlich die Anzeige sein soll (Bild 135).

Mit **Kalibrieren** (Touch Calibration) können Sie die Genauigkeit des Bildschirms nachjustieren, indem Sie nacheinander fünf Punkte berühren (Bild 136).

Mit dem Menüpunkt **180° drehen** (Rotate 180°) wird der Bildschirminhalt auf den Kopf gestellt. Die Sensoranschlüsse liegen dann an der Oberseite, was u.U. für die Handhabung zweckmäßig sein kann.

Bild 134: Anzeigehelligkeit

Bild 135: Touch-Empfindlichkeit

Bild 136: Touch-Kalibrierung

7.2. Datum und Uhrzeit

Die Einstellung von Datum & Zeit (Date & Time) nehmen Sie durch Auf- bzw. Abwärtsbewegung im betreffenden Eingabefeld vor (Bild 137).

13	Dec	2041	08 26	5	
14	Jan	2021	09 27	7	
15	Feb	2022	10:28	3	
16	Mar	2023	11 29)	
17	Apr	2024	12 30)	
✓ ✓					

Bild 137: Datum und Zeit

7.3. Anzeigesprache

In Bild 138 sehen Sie, wie die Anzeigesprache (Language) des Geräts gewählt wird. Die Auswahl der Sprache wirkt sich nur auf den Bediendialag aus. Alle gespeicherten Daten bleiben Englisch.

7.4. Signalton

Den Signalton (Beep) können Sie bei Bedarf deaktivieren (Bild 139).

Main Menu 🗶				
Settings	Display	English		
Sensors	Date & Time	Deutsch		
USB connection	Language			
Presets	Веер			
Instrument info	Factory setup			

Bild 138: Einstellung der Anzeigesprache

Main Menu 🔰				
Settings	Display	On		
Sensors	Date & Time	Off		
USB connection	Language			
Presets	Веер			
Instrument info	Factory setup			

Bild 139: Signalton ein-/ausschalten

7.5. Werkseinstellungen

Mit einem Werks-Reset wird das Gerät auf den Auslieferungszustand zurückgesetzt.

Dies erreichen Sie, indem Sie bei gedrückter Taste F1 kurz die Taste RESET drücken oder bei gedrückter Taste F1 die Taste 🕑 drücken (Bilder 1 und 2).

Die auf der SD-Karte gespeicherten Daten und die Kalibrierdaten bleiben davon unberührt.

Der Menüpunkt Werkseinstellungen (Factory Setup) im Menü Einstellmenü dient nur für Einstell- und Testzwecke beim Hersteller und ist passwortgeschützt.

7.6. Gerätedaten anzeigen

Unter Geräteinformation (Instrument Info) finden Sie Angaben zu Seriennummer, Version und Kalibrierdatum Ihres Gerätes (Bild 140).

Bild 140: Gerätedaten

8. Firmware-Update

Eine Aktualisierung der Software des VM100 erfolgt über USB im DFU-Modus (Device Firmware Upgrade). Dieses Verfahren erlaubt die vollständige Neuprogrammierung aus jedem Zustand.

Voraussetzung dafür ist die Installation des Programms **STM32CubeProgrammer** auf Ihrem PC. Das Programm steht zum Herunterladen auf unserer Webseite <u>https://mmf.de/produkt/vm100a</u> für Windows-Systeme zur Verfügung. Entpacken und installieren Sie das Programm auf Ihrem PC.

Ebenfalls von unserer Download-Seite erhalten Sie die aktuelle Firmware-Datei vm100.zip. Entpacken Sie die darin enthaltene Datei vm100.hex und speichern Sie diese in einem Ordner Ihrer Wahl.

➔ Bitte folgen Sie genau den nachstehenden Anweisungen. Das Firmware-Update betrifft die Speicher-Sektoren 2 bis 7. Die Sektoren 0 und 1 enthalten die Einstellungen und Kalibrierwerte. Sie dürfen nicht gelöscht oder überschrieben werden.

Starten Sie zunächst den STM32CubeProgrammer (Bild 141).

Bild 141: Update-Programm STM32CubeProgrammer

Wählen Sie mit 🔀 das Menü "Memory & File edition"

STM32 Cube	Programmer							f 🕒 🤮	≠ ★	57
≡	Memory & Fi	ile edition							🛑 Not c	onnected
	Device memory	vm100.he	<× +					USB	▼ Co	nnect
	Add 0x8000	🔻 00	0xC0AE4	Data 3	▼ Find	Ox Dowr	nl 💌	USB	configuration	
	Address	0	4	8	с	ASCII		Serial number	No DFU	• 0
	0x08000000 0x08000010	20050000 0804c489	0804D6B1 0804C48B	0804C461 0804C48D	0804C465	±0aAeA		PID	0xdf11	
СРИ	0x08000020 0x08000030	00000000 0804C491	00000000	00000000 0804C493	0804C48F 0804D701	ÄÄ		VID	0x0483	
swv	0x08000040	0804D701	0804D701	0804D701	0804D701	.xxx		Read Unprotect	(MCU)	
	0x08000050	08040701	0804C6D9	0804D701 0804C72D	08040701	ÉÆÙÆÇYÈ				
	0x08000070 0x08000080	0804D701 0804D701	0804D701 0804D701	0804D701 0804D701	0804D701 0804D701	·×···×···×···×··				
	0x08000090 0x080000A0	0804D701 0804D701	0804D701	0804D701 0804D701	0804C751 0804D701	.××QÇ				
	0x08000080 < [08040445	0804C5E5	08040701	08046829	۹۲ × ۵۵ قلا	> `	Tarc	get information	
	Log			Live U	Jpdate Verl	oosity level 💿 1 🔵 2	3	Board Device		2
۲	10:55:16 : STM320 10:56:24 : Read Fi 10:56:24 : Numbe 10:56:24 : segmer	LubeProgramm le: C:\Users\JB\I r of segments: ` ht[0]: address= (er API v2.8.0 Documents\VM' 1 0x8000000, size:	100_Entwicklung\ = 0xC0AE4	Debug\vm100.h	ex	\$	Device ID Revision ID Flash size		
\oslash								Bootloader Versi	on	-
?							0% 🛞			

Bild 142: STM32CubeProgrammer mit geladener Firmwaredatei

Wählen Sie den Reiter "Open file" und laden Sie die Datei vm100.hex (Bild 142).

Nun versetzen Sie das VM100 in den Update-Modus. Dazu schalten Sie das Gerät aus. Schrauben Sie die Abdeckung der Update-Schnittstelle ab (Bild 144) und schließen Sie ein USB-Kabel an, das Sie mit einem PC verbinden (Bild 143)

Bild 144: Abdeckung öffnen

Bild 143: USB-Kabel anschließen

Das Gerät schaltet sich mit dem Update-Bildschirm ein, der Hinweise zum Updatevorgang enthält (Bild 145).

Bild 145: VM100 im Update-Modus

Drücken Sie mit einem spitzen, nichtmetallischen Gegenstand, zum Beispiel einem Zahnstocher, die Taste hinter dem Schraubenloch der Update-USB-Abdeckung (Bild 146).

Bild 146: Taste drücken

Während Sie die Taste gedrückt halten, schließen Sie das Fenster mit X. Der Bildschirm wird dunkel. Das Gerät befindet sich nun im DFU-Modus.

Der DFU-Gerätetreiber ist Bestandteil des Installationspakets von STM32CubeProgrammer.

Klicken Sie *S* im STM32CubeProgrammer unter "USB", um die Anzeige zu aktualisieren. Wird das VM100 vom PC als DFU-Gerät erkannt, erscheint es im Update-Programm als Port "USB1" (Bild 147). Zur Verbindung klicken Sie auf *Connect*.

Mit **Download** starten Sie die Übertragung der Firmware auf das VM100. Bild 148 zeigt den Abschluss der erfolgreichen Übertragung. Danach können Sie das USB-Kabel abstecken und das Gerät mit der neuen Firmware starten.

Bild 147: DFU-Verbindung

STM32 Cube	STALL 🗊 💿 🔮 🛐 😕 💆 🖈 🔊								
=	Memory & File	edition							Connected
	Device memory	vm100.hex × +						USB	Disconnect
.	Address 0x8000	0000 👻 Size	0xC0AE4	Data width	32-bit 👻 Fin	d Data 0x	Download 👻	Port	USB1 V
OB CPU SWV	Address 0x0800000 0x0800010 0x0800020 0x0800030 0x0800030 0x0800040 0x0800050 0x0800060 0x0800077 0x0800077 0x0800080 0x0800090 0x0800090	0 20050000 0804C489 0000000 0804C491 0804701 0804701 08040701 08040701 08040701	4 0804D681 0804C488 0000000 08040701 0804D701 0804D701 0804D701 0804701 0804701	8 0804c461 0804c48D 0000000 77 File 0804D701 0804D701	C 0804C465 0000000 0804C48F Meld download complete 0804C751 0804D701	ASCII		Serial number PID VID Read Unprotect (M	0xdf1 0xdf3 Cu
٨	Log	0804c4a5	0804C5E5	08040701	0804C829	ta öð v)f date Verbosity level 💿	1 2 3	Targ Board Device Type	et information STM32F74x/STM32F75x MCU
()) () ()	11:07:14 : erasing se 11:07:16 : erasing se 11:07:18 : erasing se 11:07:18 : Download 11:07:33 : File downl 11:07:33 : Time elap:	ctor outos @: 0x08040 ctor 0006 @: 0x08080 ctor 0007 @: 0x080c0 in Progress: oad complete sed during download	ouu cone 000 done 000 done operation: 00:00:23	.179				Device ID Revision ID Flash size CPU Bootloader Versior	0x449 1 MB - Default Cortex-M7

Bild 148: Ende des Firmwareupdates

9. Fehlerursachen

Dateien werden nicht oder fehlerhaft ge- speichert.	Daten der SD-Karte sichern, SD-Karte entnehmen und im PC neu formatieren oder Fehlerüberprüfung durchführen.
Die Messwerte sind störbehaftet.	Für empfindliche Messungen sollte das USB-Kabel abgesteckt werden.
Im Modus Amplitude/Zeit wird keine Drehzahl angezeigt, obwohl ein Dreh- zahlsensor angeschlossen ist.	In den gemeinsamen Einstellungen für die Kanäle 1 bis 9 (Taste "ALL") muss eine Einheit für die Drehzahl gewählt werden.
Das Aufladen des Akkus dauert sehr lange.	Das Laden sollte an einem USB-Port oder Ladegerät mit mindestens 2 A Stromabgabe erfolgen. Bei Standard- USB-Anschlüssen erscheint zwar das Ladesymbol, der Strom reicht jedoch nur zum Betrieb des Gerätes.
Die Erkennung der SD-Karte vom PC über USB dauert zu lange.	Die SD-Karte muss mit dem Dateisys- tem FAT(16) formatiert werden. Ab Werk sind SD-Karten mit FAT32 for- matiert.
WAV-Datenaufzeichnung bricht ab.	Verwenden Sie eine SD-Karte mit 4 GB Kapazität und Geschwindigkeitsklasse 10.

10. Technische Daten

	VM100A	VM100B		
Messeingänge	9 IEPE-Eingänge 3 Buchsen Binder 712, 4-polig	3 IEPE-Eingänge 1 Buchse Binder 712, 4-polig		
IEPE-Versorgung	4 mA / 24 V, abschaltbar Eingangsimpedanz: $> 1 \text{ M}\Omega$			
TEDS- Sensorerkennung	IEEE 1451.4, Templates 25, 27, 28			
Messpunkterkennung	NFC mit Transpondern vom Typ A, B, F und V			
Tacho-Eingang	H-Pegel: +8 bis +28 V; L-Pegel: 0 bis +5 V Frequenz: 1 bis 1000 Hz / 60 bis 60 000 min ⁻¹ Versorgungsspannung: +26 V / < 0,1 A Buchse Binder 712, 7-polig			
Messbereich	$1 \ \mu\text{m/s}^2$ bis 10 000 m/s ² (sensora	lbhängig)		
Analog-Digital-Wand- ler	Je Kanal ein 24-Bit-Sigma-Delta-Wandler			
Analogverstärkung	1 / 10 / 100 / Autoranging			
Messfehler	<1 % (bei Referenzbedingunger	h)		
Amplitudenlinearität	>85 dB (<6 % Fehler)			
Übersprechdämpfung	$> 80 \text{ dB} (2500 \text{ mV}_{eff} / 160 \text{ Hz an})$	n Eingang)		
Messmodule				
Amplitude/Zeit	VM100-AMP (vorinstalliert)			
Frequenzanalyse	VM100-FFT (vorinstalliert)			
Amplitude/Drehzahl	VM100-RPM (Option)			
Maschinenschwingung	VM100-MAC (Option)			
Hüllkurvenanalyse	VM100-ENV (Option)			
Auswuchtung	VM100-BAL (Option)			
Terzbandanalyse	VM100-VC (Option)			
Hand-Arm	VM100-HA (Option)			
Ganzkörper	VM100-WB1 (Option)			
Ganzkörper-3 Sensoren	VM100-WB3 (Option, nur fü	r VM100A)		

Kennwert-Messungen im Zeitbereich und Humanschwingung (VM100-AMP / VM100-HA / VM100-WB1 / VM100-WB3)

Kanalzahl	1 bis 9	1 bis 3
Schwinggrößen	Beschleunigung; Geschwindigk	eit (<2 kHz); Weg (<300 Hz)
Kennwerte	Intervall-Effektivwert (unendlic wert, Spitze-Spitze-Wert, Maxin Hauptfrequenz, Wurzel der Qua	h), Effektivwert (1s), Spitzen- nal-Spitzenwert, Scheitelfaktor, dratsumme aus 3 Kanälen
Bandfilter	34 Hochpassfrequenzen von 0,2 38 Tiefpassfrequenzen von 10 H	bis 5000 Hz Iz bis 24 kHz
Bewertungsfilter für Humanschwingung	Wb; Wc; Wd; We; Wh; Wj; Wł unbewertet: 6,3 - 1259 Hz (H-A	c; Wm); 0,4 - 100 Hz (G-K)
Datenplotter	1 Wert pro Sekunde, max. 10 S	tunden, 3 bzw. 9-kanalig

Frequenzanalyse (VM100-FFT)

Kanalzahl	1 bis 3
Frequenzbereich	1 Hz bis 22 kHz
Frequenzpunkte	1024 bis 65536
Frequenzauflösung	0,1 bis 48 Hz
Fensterung	Hann, Hamming, Flattop
Amplitudenachse	Effektivwert, linear / logarithmisch, Maximalwert halten
Triggerung	Automatisch, Tacho-Anschluss, Pegeltrigger
Wasserfall-Modus	1 Kanal, bis zu 50 Spektren
Terzbandanalyse (VM1	00-VC)
Kanalzahl	1 bis 3
Frequenzbereich	1 bis 100 Hz; 21 Terz-Bänder
Amplitudenachse	Schwinggeschwindigkeit in µm/s
Schwingungskriterien	VC-A bis VC-G; Nano-D; Nano-E; Nano-EF
Hüllkurvenanalyse zu	r Wälzlagerdiagnose (VM100-ENV)
Frequenz-Marker	Drehzahl, BPFI (Innenring), BPFO (Außenring), FTF (Käfig), BSF (Rollkörper)
Drehzahlbestimmung	Tachoeingang mit Reflex-Lichtschranke oder Eingabe
Lagerliste	Bis zu 1000 Wälzlagertypen

Maschinenschwingung (VM100-MACH)

Kanalzahl	1 (Wälzlager), 3 (Schwingstärke)	
Frequenzbereich für Wälzlagerschwingung	Beschleunigung 0,2 – 24000 Hz	
Frequenzbereiche für Schwingstärke	Beschleunigung Geschwindigkeit Weg	0,2 - 2000 Hz 2 - 4000 Hz 2 - 300 Hz
Messrouten	Messpunktdefinition mit Ort, Maschine, Position und Kommentar; Erkennung mittels NFC-Tags	
Trendansicht	Grafik mit Grenzwertlinien	
Messfunktionen für Wälzlager	Spitzenwert, Effektivwert, Scheitelfaktor mit Kurzzeit- trend, Hüllkurvenanalyse, 3 Frequenzbänder, Drehzahl	
Messfunktionen für Schwingstärke	Spitzenwert, Effektivwert von Geschwindigkeit, Beschleu- nigung oder Weg mit Kurzzeittrend, Phasenwinkel, Fre- quenzanalyse, Hauptfrequenzen/Harmonische, Drehzahl	
ISO-Norm-Assistent für Schwingstärke	ISO 20816-2: Gas- und Dampfturbinen, Generatoren >40 MW ISO 20816-3: Industriemaschinen >15 kW ISO 20816-5: Wasserkraft- und Pumpspeicheranlagen ISO 10816-7: Kreiselpumpen ISO 20816-8: Hubkolbenkompressoren ISO 20816-9: Getriebe	
---	---	
	ISO 14694: Industrieventilatoren	

Auswuchtung (VM100-BAL)

Ebenenzahl	1 oder 2
Drehzahlbereich	100 bis 60000 min ⁻¹
Winkelbestimmung	Tachoeingang mit Reflex-Lichtschranke
Modi	freie Winkel oder Festorte, Massen anbringen oder entfernen
Anzeigewerte	Schwinggeschwindigkeit / -beschleunigung; Restunwucht; Wuchtgüte

Messwertspeicherung und Schnittstelle

Datenspeicher	Micro-SD-Karte; 4 GB; FAT-Filesystem; entnehmbar
Datenformate	CSV für Messdaten BMP für Bildschirmfotos WAV für Rohsignale
USB-Anschluss	USB 2.0 High-Speed, Typ C

Stromversorgung

Akkumulator	Nickel-Metall-Hydrid; fest verbaut; 4,8 V; 9Ah
Betriebsdauer	10 bis 14 h
Aufladung	über USB mit Steckernetzgerät 5 V/>2 A; ca. 6 h
Sonstiges	
Bildschirm	RGB-TFT mit Touch-Bedienung; 800 x 480 Bildpunkte
Temperaturbereich	-20 bis 60 °C; $<$ 95 % Luftfeuchte; ohne Kondensation
Schutzgrad	IP65
Abmessungen	215 mm x 150 mm x 50 mm
Masse	1,3 kg
Lieferumfang	Messgerät; USB-C-Kabel; USB-Ladegerät; Transportkoffer
Optionales Zubehör	
Sensor-Adapterkabel	034-B711-BNCf: Binder auf BNC wbl.; 0,5 m
Reflex-Lichtschranke	VM100-LS mit 5 m Kabel und flexiblem Magnetstativ

Garantie

Metra gewährt auf dieses Produkt eine Herstellergarantie von

24 Monaten.

Die Garantiezeit beginnt mit dem Rechnungsdatum.

Die Rechnung ist aufzubewahren und im Garantiefall vorzulegen. Die Garantiezeit endet nach Ablauf von 24 Monaten nach dem Kauf, unabhängig davon, ob bereits Garantieleistungen erbracht wurden.

Durch die Garantie wird gewährleistet, dass das Gerät frei von Fabrikations- und Materialfehlern ist, die die Funktion entsprechend der Bedienungsanleitung beeinträchtigen.

Garantieansprüche entfallen bei unsachgemäßer Behandlung, insbesondere Nichtbeachtung der Bedienungsanleitung, Betrieb außerhalb der Spezifikation und Eingriffen durch nicht autorisierte Personen.

> Die Garantie wird geleistet, indem nach Entscheidung durch Metra einzelne Teile oder das Gerät ausgetauscht werden.

Die Kosten für die Versendung des Gerätes an Metra trägt der Erwerber. Die Kosten für die Rücksendung trägt Metra.

Produkt: Schwingungsanalysator Typ: VM100A/B Hiermit wird bestätigt, dass das oben beschriebene Produkt den folgenden Anforderungen entspricht:

EN 55022: 1998 EN 55024: 1998

Diese Erklärung wird verantwortlich für den Hersteller Manfred Weber Metra Mess- und Frequenztechnik in Radebeul e.K.

Meißner Str. 58

D-01445 Radebeul

abgegeben durch

Michael Weber

Radebeul, den 30. Januar 2022

Die Baumusterprüfung nach ISO 8041-1 erfolgte im Mai 2022.